img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
沙漠与沙漠化

山西公海湖泊沉积物记录的大气粉尘现代过程

  • 陈圣乾 ,
  • 王鑫 ,
  • 陈建徽 ,
  • 刘建宝 ,
  • 王宗礼 ,
  • 强明瑞 ,
  • 陈发虎
展开
  • 兰州大学 资源环境学院/西部环境教育部重点实验室, 甘肃 兰州 730000
陈圣乾(1994-),男,山东嘉祥人,硕士研究生,主要从事过去大气粉尘研究。E-mail:chenshq12@lzu.edu.cn

收稿日期: 2016-06-16

  修回日期: 2016-07-13

  网络出版日期: 2017-03-20

基金资助

国家自然科学基金项目(41372180);国家基础科学人才培养基金项目(J1310036)

The Modern Processes of Atmospheric Dust Recorded by Sediments from Gonghai Lake, Shanxi, China

  • Chen Shengqian ,
  • Wang Xin ,
  • Chen Jianhui ,
  • Liu Jianbao ,
  • Wang Zongli ,
  • Qiang Mingrui ,
  • Chen Fahu
Expand
  • College of Earth and Environmental Sciences/MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou 730000, China

Received date: 2016-06-16

  Revised date: 2016-07-13

  Online published: 2017-03-20

摘要

湖泊粉尘记录是研究区域大气粉尘演化历史的重要载体,而现代过程研究是定量提取湖泊沉积物中粉尘信号的重要基础。对山西公海湖泊沉积岩芯样品及周边不同类型的表土样品开展了粒度分析,并对岩芯样品进行粒度组分的定量分离。结果表明:全新世湖泊岩芯样品以黏粒(<2 μm)、细粉砂(2~19 μm)和粗粉砂(19~78 μm)为主,粗粉砂组分的粒度特征与湖泊沉积物中的石英颗粒、黄土样品中的粗粒组分及现代大气降尘的粒度特征相似,石英颗粒的表面微形态也具有典型风成特征。因此,公海湖泊沉积物中粒径19~78 μm的粗粉砂组分可用来代表大气粉尘的变化,这与湖泊沉积物中粗粉砂组分是大气尘暴降尘主要组分的认识一致。另外,公海湖泊冰面粉尘样品的平均粒径还具有从西北向东南递减的趋势,表现出与冬季风方向一致的特征,进一步表明公海湖泊沉积物中粗粉砂组分可以代表东亚冬季风强度的变化。因此,公海湖泊岩芯中的粗粉砂组分可用来重建全新世大气粉尘变化以及可能的东亚冬季风强度演化历史。

本文引用格式

陈圣乾 , 王鑫 , 陈建徽 , 刘建宝 , 王宗礼 , 强明瑞 , 陈发虎 . 山西公海湖泊沉积物记录的大气粉尘现代过程[J]. 中国沙漠, 2017 , 37(2) : 228 -236 . DOI: 10.7522/j.issn.1000-694X.2016.00096

Abstract

Lacustrine dust record is one of important documents for studying the evolution history of reginal dust, while the study of modern deposition processes of dust is the key basis to quantitatively extract dust signal from lake sediments. In the present paper, we analyzed the grain-size distributions of lacustrine sediments from Gonghai Lake and different types of modern surface deposits from the catchment. In addition, we further quantitatively separated grain-size components of sedimentary core from Gonghai Lake. The results indicate that lacustrine sediments from Gonghai Lake during the Holocene are mainly composed of clay (<2 μm), fine silt (2-19 μm) and coarse silt (19-78 μm), and the grain-size distribution of the coarse silt is similar with that of the isolated quartz particles in the sediments, coarse component of loess and modern atmospheric dust. Moreover, the surface of lacustrine quartz particles is characterized by typical aeolian features. Hence we conclude that the variation of coarse silt component in lake sediments from Gonghai Lake can be used to indicate the evolution of atmospheric dust, which is consistent with the knowledge that coarse silt component of lake sediments could be regarded as the main component of dust storm. In addition, the mean grain size of ice-trapped aeolian dust from lake-ice surface of Gonghai Lake decreases from northwest to southeast, and this direction is consistent with prevailing wind direction of winter monsoon, thus further indicating that the content of coarse silt component in sediments from Gonghai Lake can represent the variation of East Asian winter monsoon. Therefore, it is suggested that the coarse silt component of sediments from Gonghai Lake can be used to reconstruct the variation of atmospheric dust and the possible evolution history of East Asian winter monsoon during the Holocene.

参考文献

[1] Shao Y P,Wyrwoll K H,Chappell A,et al.Dust cycle:an emerging core theme in Earth system science[J].Aeolian Research,2011,2(4):181-204.

[2] Maher B A,Prospero J M,Mackie D,et al.Global connections between aeolian dust,climate and ocean biogeochemistry at the present day and at the last glacial maximum[J].Earth-Science Reviews,2010,99:61-97.

[3] Martin J H,Gordon R M,Fitzwater S E,et al.Iron in Antarctic waters[J].Nature,1990,345:156-158.

[4] 陈杰,赵素平,殷代英,等.沙尘天气过程对中国北方城市空气质量的影响[J].中国沙漠,2015,35(2):423-430.

[5] Esmaeil N,Gharagozloo M,Rezaei A,et al.Dust events,pulmonary diseases and immune system[J].American Journal of Clinical and Experimental Immunology,2014,3(1):20-29.

[6] Chen F H,Qiang M R,Zhou A F,et al.A 2000-year dust storm record from Lake Sugan in the dust source area of arid China[J].Journal of Geophysical Research:Atmospheres,2013,118:2149-2160.

[7] Sun D H,An Z S,Su R Y,et al.Eolian sedimentary records for the evolution of monsoon and westerly circulations of northern China in the last 2-6 Ma[J].Science in China Series D:Earth Sciences,2003,46(10):1049-1059.

[8] Sun D H,Bloemendal J,Rea D K,et al.Bimodal grain-size distribution of Chinese loess,and its palaeoclimatic implications[J].Catena,2004,55:325-340.

[9] Zhou Z J,Zhang G C.Typical severe dust storms in northern China during 1954-2002[J].Chinese Science Bulletin,2003,48:2366-2370.

[10] 张德二.我国历史时期以来降尘的天气气候学初步分析[J].中国科学:B辑,1984(3):278-288.

[11] Kohfeld K E,Harrison S P.DIRTMAP:the geological record of dust[J].Earth-Science Reviews,2001,54:81-114.

[12] 沈吉,薛滨,吴敬禄,等.湖泊沉积与环境演化[M].北京:科学出版社,2010:1-476.

[13] Qiang M R,Chen F H,Zhang J W,et al.Grain size in sediments from Lake Sugan:a possible linkage to dust storm events at the northern margin of the Qinghai-Tibetan Plateau[J].Environmental Geology,2007,51:1229-1238.

[14] Sun D H,Bloemendal J,Rea D K,et al.Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components[J].Sedimentary Geology,2002,152:263-277.

[15] Xiao J L,Chang Z G,Fan J W,et al.The link between grain-size components and depositional processes in a modern clastic lake[J].Sedimentology,2012,59:1050-1062.

[16] Yu S Y,Colman S M,Li L X.BEMMA:a hierarchical bayesian end-member modeling analysis of sediment grain-size distributions[J].Mathematical Geosciences,2016, 48(6):723-741.

[17] An Z S,Colman S M,Zhou W J,et al.Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J].Scientific Reports,2012,2:619.

[18] Qiang M R,Liu Y Y,Jin Y X,et al.Holocene record of eolian activity from Genggahai Lake,northeastern Qinghai-Tibetan Plateau,China[J].Geophysical Research Letters,2014,41:589-595.

[19] He Y X,Zhao C,Song M,et al.Onset of frequent dust storms in northern China at~ AD 1100[J].Scientific Reports,2015,5:17111.

[20] Uno I,Eguchi K,Yumimoto K,et al.Asian dust transported one full circuit around the globe[J].Nature Geoscience,2009,2:557-560.

[21] 李晋昌,康晓云,高婧.黄土高原东部大气降尘量的空间和季节变化[J].中国环境科学,2013,33(10):1729-1735.

[22] Chen F H,Liu J B,Xu Q H,et al.Environmental magnetic studies of sediment cores from Gonghai Lake:implications for monsoon evolution in North China during the late glacial and Holocene[J].Journal of Paleolimnology,2013,49:447-464.

[23] Chen F H,Xu Q H,Chen J H,et al.East Asian summer monsoon precipitation variability since the last deglaciation[J].Scientific Reports,2015,5:11186.

[24] Liu J B,Chen J H,Zhang X J,et al.Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J].Earth-Science Reviews,2015,148:194-208.

[25] 王鑫,王宗礼,陈建徽,等.山西宁武天池区高山湖泊群的形成原因[J].兰州大学学报:自然科学版,2014(2):208-212.

[26] 山西省地质矿产局.山西省区域地质志[M].北京:地质出版社,1989:1-780.

[27] Wang F,Sun D H,Chen F H,et al.Formation and evolution of the Badain Jaran Desert,North China,as revealed by a drill core from the desert center and by geological survey[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2015,426:139-158.

[28] 陈隆勋,朱乾根,罗会邦,等.东亚季风[M].北京:气象出版社,1991:1-262.

[29] Chen F H,Yu Z C,Yang M L,et al.Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J].Quaternary Science Reviews,2008,27(3):351-364.

[30] 刘东生.黄土与环境[M].北京:科学出版社,1985:1-481.

[31] 鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究[J].科学通报,1997,42(23):2535-2538.

[32] Xiao J L,Porter S C,An Z S,et al.Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr[J].Quaternary Research,1995,43:22-29.

[33] Sun Y B,Lu H Y,An Z S.Grain size distribution of quartz isolated from Chinese loess/paleosol[J].Chinese Science Bulletin,2000,45:2296-2298.

[34] Li Z J,Sun D H,Chen F H,et al.Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China[J].Quaternary Science Reviews,2014,85:85-98.

[35] Wang X,Wei H T,Khormali F,et al.Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications[J].Quaternary International,2017,429:41.

[36] 沈亚萍,张春来,李庆,等.中国东部沙区表层沉积物粒度特征[J].中国沙漠,2016,36(1):150-157.

[37] 丁仲礼,杨石岭,孙继敏,等.2-6 Ma前后大气环流重构的黄土-红粘土沉积证据[J].第四纪研究,1999,19(3):277-281.

[38] Pye K.Aeolian Dust and Dust Deposits[M].London,UK:Academic Press,1987:1-334.

[39] Qiang M R,Lang L,Wang Z.Do fine-grained components of loess indicate westerlies:insights from observations of dust storm deposits at Lenghu (Qaidam Basin,China)[J].Journal of Arid Environments,2010,74(10):1232-1239.

[40] 鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学:D辑,1998,28(3):278-283.

[41] Porter S C,An Z S.Correlation between climate events in the North Atlantic and China during the last glaciation[J].Nature,1995,375:305-308.

[42] Sun Y B,Clemens S C,An Z S,et al.Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J].Quaternary Science Reviews,2006,25:33-48.

[43] Krinsley D H,Doornkamp J C.Atlas of Quartz Sand Surface Textures[M].London,UK:Cambridge University Press,1973:1-91.

[44] 谢又予,崔之久,李洪云.扫描电镜下石英砂的表面结构特征及其地质解译[J].石油与天然气地质,1981,2(1):66-74.

文章导航

/