img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

开垦对荒漠土壤微生物群落结构特征的影响

  • 王银亚 ,
  • 李晨华 ,
  • 马健
展开
  • 1. 中国科学院新疆生态与地理研究所 荒漠与绿洲国家重点实验室, 新疆 乌鲁木齐 830011;
    2. 中国科学院新疆生态与地理研究所 阜康荒漠生态系统国家站, 新疆 乌鲁木齐 830011;
    3. 中国科学院大学, 北京 100049
王银亚(1990-),女,河南人,硕士研究生,主要从事土壤生态与微生物生态的研究。E-mail:905860125@qq.com

收稿日期: 2015-12-25

  修回日期: 2016-03-01

  网络出版日期: 2017-05-20

基金资助

国家自然科学基金项目(41671114,41301102)

Effects of Desert Reclamation on Soil Microbial Community and Microbial Diversity

  • Wang Yinya ,
  • Li Chenhua ,
  • Ma Jian
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-12-25

  Revised date: 2016-03-01

  Online published: 2017-05-20

摘要

以古尔班通古特沙漠南缘典型流域(玛纳斯河、吉木萨尔河、三工河、四工河、水磨河)的绿洲农田与毗邻荒漠土壤为研究对象,采用磷脂脂肪酸(PLFA)方法分析不同开垦年限的土壤微生物生物量、群落结构、多样性变化特征。结果表明:荒漠开垦后,土壤微生物总PLFA含量、真菌PLFA、细菌PLFA、革兰氏阳性菌(G+)和革兰氏阴性菌(G-)PLFA含量均显著增加。荒漠开垦5 a内,细菌PLFA与G-PLFA增长更强烈,使得真菌PLFA/细菌PLFA比值降低了48%,G+PLFA/G-PLFA比值(革兰氏阳性菌与革兰氏阴性菌的PLFA比值)降低了67%。但随着开垦年限的延长,这两个比值没有显著变化,表明与开垦年限相比,荒漠的开垦行为对土壤微生物群落结构有着更加强烈的影响。随着开垦年限的增加,土壤微生物群落多样性总体呈上升趋势。虽然荒漠在开垦50 a后多样性指数略有下降,但仍远高于荒漠土壤。土壤微生物总PLFA含量和大部分菌群PLFA含量与土壤电导率显著负相关,与全氮和有机碳显著正相关。荒漠在开垦过程中灌溉增加了土壤水分且降低了土壤盐分,全氮和有机碳含量增加,这些改变是土壤微生物群落变化的主要原因。荒漠开垦有助于提高土壤微生物PLFA含量、改善土壤微生物的群落结构、丰富土壤微生物群落多样性,有利于土壤质量的提高。

本文引用格式

王银亚 , 李晨华 , 马健 . 开垦对荒漠土壤微生物群落结构特征的影响[J]. 中国沙漠, 2017 , 37(3) : 514 -522 . DOI: 10.7522/j.issn.1000-694X.2016.00019

Abstract

Soil microbial biomass, community structure and microbial diversity were analyzed by using phospholipid fatty acid(PLFA)methods, based on the soil of oasis field typical basins (Manas River Basin, Jimsar river, Sangong river, Sigong river, shuimo River) and the adjoining desert in the southern Gurbantunggut Desert. The result of the ecological evaluation showed that: The total PLFAs, Fungi PLFA, Bacteria PLFA, Gram-positive bacteria PLFA(G+) and Gram-negative bacteria PLFA(G-) had generally increased after reclamation of desert; Microbial community structure has undergone significant changes: In the early desert reclamation (3 a), fungal PLFA/bacterial PLFA ratio decreased 48%, G+ PLFA/G- PLFA ratio (Gram-positive bacteria and Gram-negative bacteria PLFA ratio) reduce 67%. But with the extension of cultivation years, these two ratios did not change significantly, suggesting that compared with reclamation years, desert reclamation behavior have a more intense effect on the soil microbial community. In addition, the overall trend of the soil wicrobial diversity is rising with years of use. The diversity index showed a slight decrease after reclamation of 50 years but still higher than the desert soil. The total soil microbial PLFA and most bacteria PLFA content had significant negative correlation with soil conductivity while they had significant positive correlation with total nitrogen and organic carbon. Desert in the reclamation process due to irrigation increased soil moisture and reduces soil salinity, while total nitrogen and organic carbon content increased, these changes are the main reasons for the change of soil microbial communities. This study suggested that desert reclamation helped to improve soil microbial PLFA content, improve soil microbial community structure, and enrich diversity of soil microbial communities. Finally it contributed to improve soil quality.

参考文献

[1] Lerch T Z,Dignac M F,Nunan N,et al.Dynamics of soil microbial populations involved in 2,4-D biodegradation revealed by FAME-based stable isotope probing[J].Soil Biology and Biochemistry,2009,41(1):77-85.
[2] Zhong W,Gu T,Wang W,et al.The effects of mineral fertilizer and organic manure on soil microbial community and diversity[J].Plant and Soil,2010,326(1/2):511-522.
[3] Liu E,Yan C,Mei X,et al.Long-term effect of chemical fertilizer,straw,and manure on soil chemical and biological properties in northwest China[J].Geoderma,2010,158(3):173-180.
[4] 龙利群,李新荣.土壤微生物结皮对两种一年生植物幼苗存活和生长的影响[J].中国沙漠,2003,23(6):656-660.
[5] 林黎,崔军,陈学萍,等.滩涂围垦和土地利用对土壤微生物群落的影响[J].生态学报,2014,34(4):899-906.
[6] 许艳丽,李春杰,韩晓增.不同植被覆盖对黑土微生物功能多样性的影响[J].生态学杂志,2008,27(7):1134-1140.
[7] Cui J,Liu C,Li Z,et al.Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary,China[J].Soil and Tillage Research,2012,123:50-60.
[8] 李易麟,南忠仁.开垦对西北干旱区荒漠土壤养分含量及主要性质的影响——以甘肃省临泽县为例[J].干旱区资源与环境,2008,22(10):147-151.
[9] 罗格平,张百平.干旱区可持续土地利用模式分析——以天山北坡为例[J].地理学报,2006,66(11):1160-1170.
[10] 李晨华,李彦,谢静霞,等.荒漠-绿洲土壤微生物群落组成与其活性对比[J].生态学报,2007,27(8):3391-3399.
[11] 龚新梅,吕光辉,桂东伟.用虚拟水理论方法讨论新疆绿洲生态恢复与可持续发展[J].干旱区资源与环境,2007,21(5):132-135.
[12] 韩德麟.关于绿洲若干问题的认识[J].干旱区资源与环境,1995,9(3):13-31.
[13] Xu H,Li Y.Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J].Plant and Soil,2006,285(1/2):5-17.
[14] 李晨华,唐立松.长期施肥对绿洲农田土壤剖面有机碳及其组分的影响[J].干旱区地理,2013,36(4):637-644.
[15] 韩文炎,阮建云,林智,等.茶园土壤主要营养障碍因子及系列茶树专用肥的研制[J].茶叶科学,2002,22(1):70-74.
[16] 王少昆,赵学勇,左小安,等.科尔沁沙地植物萌动期不同类型沙丘土壤微生物区系特征[J].中国沙漠,2008,28(4):696-700.
[17] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
[18] 马文文,姚拓,靳鹏,等.荒漠草原 2 种植物群落土壤微生物及土壤酶特征[J].中国沙漠,2014,34(1):176-183.
[19] Frostegard A,Tunlid A,Baath E.Microbial biomass measured as total lipid phosphate in soils of different organic content[J].Journal of Microbiological Methods,1991,14(3):151-163.
[20] Thoms C,Gleixner G.Seasonal differences in tree species influence on soil microbial communities[J].Soil Biology and Biochemistry,2013,66:239-248.
[21] Córdova-Kreylos A L,Cao Y,Green P G,et al.Diversity,composition,and geographical distribution of microbial communities in California salt marsh sediments[J].Applied and Environmental Microbiology,2006,72(5):3357-3366.
[22] Wu Y,Ding N,Wang G,et al.Effects of different soil weights,storage times and extraction methods on soil phospholipid fatty acid analyses[J].Geoderma,2009,150(1):171-178.
[23] 吕桂芬,吴永胜,李浩,等.荒漠草原不同退化阶段土壤微生物、土壤养分及酶活性的研究[J].中国沙漠,2010,30(1):104-109.
[24] 逄蕾,肖洪浪,谢忠奎,等.砂田不同覆盖方式对土壤微生物组成的影响[J].中国沙漠,2012,32(2):351-358.
[25] Zak D R,Ringelberg D B,Pregitzer K S,et al.Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2[J].Ecological Applications,1996,6(1):257-262.
[26] Fuchslueger L,Bahn M,Fritz K,et al.Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow[J].New Phytologist,2014,201(3):916-927.
[27] Dong H Y,Kong C H,Wang P,et al.Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem[J].Soil Biology and Biochemistry,2014,69:275-281.
[28] 吕贻忠,马兴旺.荒漠化土壤养分变化的影响因素研究进展[J].生态环境,2003,12(4):473-477.
[29] Liu S H,Liu S Q,Zhang Z,et al.Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities[J].Scientia Agricultura Sinica,2010,43(5):1000-1006.
[30] Fontaine S,Mariotti A,Abbadie L.The priming effect of organic matter:a question of microbial competition[J].Soil Biology and Biochemistry,2003,35(6):837-843.
[31] Chapin III F S,Matson P A,Vitousek P.Principles of terrestrial ecosystem ecology[M].New York,USA:Springer Science & Business Media,2011,(47):621-629.
[32] 周智彬,李培军.塔里木沙漠公路防护林土壤微生物活性研究[J].中国沙漠,2003,23(4):452-458.
文章导航

/