img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

基于LiDAR数据的额济纳绿洲胡杨(Populus euphratica)河岸林植被覆盖分类与植被结构参数提取

  • 苏阳 ,
  • 祁元 ,
  • 王建华 ,
  • 徐菲楠 ,
  • 张金龙
展开
  • 1. 中国科学院西北生态环境资源研究院 甘肃省遥感重点实验室 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
苏阳(1991-),男,甘肃兰州人,硕士研究生,主要从事生态遥感研究。E-mail:suyang@lzb.ac.cn

收稿日期: 2017-01-13

  修回日期: 2017-04-21

  网络出版日期: 2017-07-20

基金资助

中国科学院西部行动计划三期项目(KZCX2-XB3-15);国家自然科学基金重大研究计划重点项目群(9125001,9125002,9125003,9125004)

Vegetation Coverage Classification and Vegetation Structure Parameters Extraction of Populus euphratica Forest in Ejina Oasis by LiDAR Data

  • Su Yang ,
  • Qi Yuan ,
  • Wang Jianhua ,
  • Xu Feinan ,
  • Zhang Jinlong
Expand
  • 1. Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-01-13

  Revised date: 2017-04-21

  Online published: 2017-07-20

摘要

黑河下游额济纳旗气候极端干旱,生态环境十分脆弱,该区域胡杨(Populus euphratica)河岸林植被覆盖分类与植被结构参数提取是生态环境评价、植被变化分析、区域生态水文过程研究的基础。利用机载LiDAR数据,综合多种处理方法,进行植被覆盖分类与植被结构参数提取,分析了胡杨河岸林的分布和生长状况。结果表明,植被覆盖分类总体精度和Kappa系数分别为95.86%和0.91,整体分类精度高,能够有效区分额济纳绿洲中胡杨、柽柳、建筑物等,对胡杨树高、冠幅、胸径和叶面积指数等植被结构参数提取精度总体较高,能够为多尺度生态耗水研究等提供有效参数。

本文引用格式

苏阳 , 祁元 , 王建华 , 徐菲楠 , 张金龙 . 基于LiDAR数据的额济纳绿洲胡杨(Populus euphratica)河岸林植被覆盖分类与植被结构参数提取[J]. 中国沙漠, 2017 , 37(4) : 689 -697 . DOI: 10.7522/j.issn.1000-694X.2017.00028

Abstract

The climate is extremely arid,and the ecological environment is fragile in Ejina Oasis in lower reaches of the Heihe River.The vegetation cover and vegetation structure parameters of Populus euphratica forest are the basis of ecological environment assessment,vegetation change analysis and regional ecological and hydrological processes research in the region.In this study,vegetation coverage was classified,and vegetation structure parameters were extracted by the airborne LiDAR data,and the distribution and growth of P.euphratica riparian forest was analyzed.The P.euphratica,Tamarix and buildings were effectively discriminated in Ejina Oasis and the overall accuracy and Kappa coefficient of vegetation coverage classification were 95.86% and 0.91,respectively.The structure parameters of P.euphratica forest vegetation (tree height,crown diameter,DBH and leaf area index) were extracted at high accuracy level,which provided effective parameters for multi-scale ecological water consumption research.

参考文献

[1] 卢玲,李新,程国栋,等.黑河流域景观结构分析[J].生态学报,2001,21(8):1217-1224.
[2] 李新,程国栋.流域科学研究中的观测和模型系统建设[J].地球科学进展,2008,23(7):756-764.
[3] 张小由,龚家栋,赵雪,等.额济纳绿洲近20年来土地覆被变化[J].地球科学进展,2005,20(12):1300-1305.
[4] 贾艳红,赵传燕,南忠仁.西北干旱区黑河下游植被覆盖变化研究综述[J].地理科学进展,2007,26(4):64-74.
[5] 陈亚宁,李稚,范煜婷,等.西北干旱区气候变化对水文水资源影响研究进展[J].地理学报,2014,69(9):1295-1304.
[6] 钟华平,刘恒,王义,等.黑河流域下游额济纳绿洲与水资源的关系[J].水科学进展,2002,13(2):223-228.
[7] 郭辉,黄粤,李向义,等.基于多尺度遥感数据的塔里木河干流地区植被覆盖动态[J].中国沙漠,2016,36(5):1472-1480.
[8] Chen Y H,Li X B,Shi P J,et al.Estimating vegetation coverage change using remote sensing data in Haidian District,Beijing[J].Acta Phytoecologica Sinica,2001,25(5):588-593.
[9] Chen J M,Liu J,Leblanc S G,et al.Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption[J].Remote Sensing of Environment,2003,84(4):516-525.
[10] Myneni R B,Maggion S,Iaquinta J,et al.Optical remote sensing of vegetation:modeling,caveats,and algorithms[J].Remote Sensing of Environment,1995,51(51):169-188.
[11] Wulder M.Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters[J].Progress in Physical Geography,1998,22(4):651-660.
[12] Lim K,Treitz P,Wulder M,et al.LIDAR remote sensing of forest structure[J].Progress in Physical Geography,2003,27(1):88-106.
[13] 马晓雪,吴中海,李家存.LiDAR技术在地质环境中的主要应用与展望[J].地质力学学报,2016,22(1):93-103.
[14] Baltsavias E P.Airborne laser scanning:basic relations and formulas[J].ISPRS Journal of photogrammetry and remote sensing,1999,54(2):199-214.
[15] Wasser L,Chasmer L,Day R,et al.Quantifying land use effects on forested riparian buffer vegetation structure using LiDAR data[J].Ecosphere,2015,6(1):1-17.
[16] Seavy N E,Viers J H,Wood J K.Riparian bird response to vegetation structure:a multiscale analysis using LiDAR measurements of canopy height[J].Ecological Applications,2009,19(7):1848-1857.
[17] Nilsson M.Estimation of tree heights and stand volume using an airborne lidar system[J].Remote Sensing of Environment,1996,56(1):1-7.
[18] 满其霞.激光雷达和高光谱数据融合的城市土地利用分类方法研究[D].上海:华东师范大学,2015.
[19] 高润宏,董智,张昊,等.额济纳绿洲胡杨林更新及群落生物多样性动态[J].生态学报,2005,25(5):1019-1025.
[20] 额济纳旗林业局.阿拉善戈壁上的绿色明珠——额济纳胡杨林国家级自然保护区[J].内蒙古林业,2007(3):19-19.
[21] 龚家栋,程国栋,张小由,等.黑河下游额济纳地区的环境演变[J].地球科学进展,2002,17(4):491-496.
[22] 席海洋,冯起,司建华,等.黑河下游绿洲NDVI对地下水位变化的响应研究[J].中国沙漠,2013,33(2):574-582.
[23] 陈江南,李会安,王国庆,等.黑河下游额济纳旗典型植被调查与分析[J].水土保持学报,2003,17(5):129-131.
[24] 付爱红,陈亚宁,李卫红.中国黑河下游荒漠河岸林植物群落水分利用策略研究[J].中国科学:地球科学,2014(4):693-705.
[25] 何志斌,赵文智.黑河下游荒漠河岸林典型样带植被空间异质性[J].冰川冻土,2003,25(5):591-596.
[26] 李新,马明国,王建,等.黑河流域遥感-地面观测同步试验:科学目标与试验方案[J].地球科学进展,2008,23(9):897-914.
[27] 李新,刘绍民,马明国,等.黑河流域生态-水文过程综合遥感观测联合试验总体设计[J].地球科学进展,2012,27(5):481-498.
[28] 王欣,陈传法.LiDAR森林冠层高度模型凹坑去除方法[J].测绘科学,2016,41(12):157-161.
[29] 陈加利,姜喜,韩路.人工林胡杨树高、基径、冠径与胸径的关系分析[J].中国农学通报,2014,2014,30(16):18-21.
[30] 崔要奎,赵开广,范闻捷,等.机载Lidar数据的农作物覆盖度及LAI估测[J].遥感学报,2011,15(6):1276-1288.
[31] 高程程,惠晓威.基于灰度共生矩阵的纹理特征提取[J].计算机系统应用,2010,19(6):195-198.
[32] 琚存勇,蔡体久,冯仲科.基于数学形态学和最大似然法的遥感图像分类研究[J].北京林业大学学报,2005(增刊2):84-87.
[33] 周淑芳.基于机载LiDAR与航空像片的单木树高提取研究[D].哈尔滨:东北林业大学,2007.
[34] 何瑞珍,黄家荣,全锋.基于泰森多边形与人工神经网络的单木模型研究[J].河南农业大学学报,2009,43(3):260-263.
[35] 王平.基于机载LiDAR数据和航空像片的单木参数提取研究[D].哈尔滨:东北林业大学,2012.
[36] 杨琼,李征珍,傅强,等.胡杨(Populus euphratica)叶异速生长随发育的变化[J].中国沙漠,2016,36(3):659-665.
[37] 顾亚亚,张世卿,李先勇,等.濒危物种胡杨胸径与树龄关系研究[J].塔里木大学学报,2013,25(2):66-69.
[38] 陈纪龙,姚江河,姚旭.胡杨茎高与胸径生长模型及可视化模拟[J].湖北农业科学,2014,53(20):4966-4968.
[39] Bonan G B.Importance of leaf area index and forest type when estimating photosynthesis in boreal forests[J].Remote sensing of Environment,1993,43(3):303-314.
[40] Andersen J,Dybkjaer G,Jensen K H,et al.Use of remotely sensed precipitation and leaf area index in a distributed hydrological model[J].Journal of Hydrology,2002,264(1/4):34-50.
[41] Vose J M,Clinton B D,Sullivan N H,et al.Vertical leaf area distribution,light transmittance,and application of the Beer-Lambert law in four mature hardwood stands in the southern Appalachians[J].Canadian Journal of Forest Research,1995,25(6):1036-1043.
[42] Solberg S,Brunner A,Hanssen K H,et al.Mapping LAI in a Norway spruce forest using airborne laser scanning[J].Remote Sensing of Environment,2009,113(11):2317-2327.
[43] 别强.基于激光雷达和合成孔径雷达资料的森林参数反演研究[D].兰州:兰州大学,2013.
[44] 李文娟,赵传燕,别强,等.基于机载激光雷达数据的森林结构参数估测[J].遥感技术与应用,2015,30(5):917-924.
[45] 王金山,哈力克·玉米提,Cyffka B,等.塔里木河下游胡杨林胸径结构及林木分布特征[J].植物学报,2008,25(6):728-733.
文章导航

/