img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

红砂(Reaumuria soongorica)响应干旱和UV-B辐射双重胁迫的基因转录表达

  • 刘丹 ,
  • 刘玉冰 ,
  • 张雯莉
展开
  • 1. 中国科学院西北生态环境资源研究院 沙坡头沙漠试验研究站/甘肃省寒区旱区逆境生理与生态重点实验室, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
刘丹(1992-),女,河北唐山人,硕士研究生,主要从事植物生理生态学方向研究。E-mail:hiliudan@163.com

收稿日期: 2016-11-02

  修回日期: 2016-12-05

  网络出版日期: 2017-07-20

基金资助

国家重点基础研究发展计划项目(2013CB429904);国家自然科学基金项目(91125029)

Gene Transcriptional Expression in Reaumuria soongorica under Combined Stress of Drought and UV-B Radiation

  • Liu Dan ,
  • Liu Yubing ,
  • Zhang Wenli
Expand
  • 1. Shapotou Desert Research & Experiment Station/Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Science, Beijing 100049, China

Received date: 2016-11-02

  Revised date: 2016-12-05

  Online published: 2017-07-20

摘要

荒漠植物在自然生境中同时遭受多种环境因子的胁迫,但植物对多重胁迫因子的应答响应机理目前仍然未知。利用数字基因表达谱技术分析了荒漠植物红砂(Reaumuria soongorica)在干旱、UV-B辐射以及干旱和UV-B辐射共胁迫下基因在转录水平的表达响应。结果显示:胁迫处理的材料与对照材料相比,差异表达的基因有上调表达基因和下调表达基因,且不同胁迫中下调表达基因总数多于上调的。双重胁迫与单因子胁迫相比,差异表达基因数量明显增加,且上调表达基因的数量增多,单因子胁迫之间的表达谱比双重胁迫与单因子之间的更为相似。双重胁迫诱导了356个上调和248个下调的特异表达基因。从诱导基因的差异表达量来看,多数基因的差异表达量集中在2~5倍,同时也诱导了少数基因的高度表达(高于100倍)。差异表达基因的GO(Gene Ontology)功能富集显著性分析和KEGG(Kyoto Encyclopedia of Genes and Genomes)代谢通路分析表明,双重胁迫相比单因子胁迫,固碳作用等生物过程的表达显著性富集,且不同的代谢途径对不同的胁迫处理表现出不同程度的响应。这说明植物在基因转录水平对单因子胁迫和双重胁迫的响应机理在很大程度上存在差异。

本文引用格式

刘丹 , 刘玉冰 , 张雯莉 . 红砂(Reaumuria soongorica)响应干旱和UV-B辐射双重胁迫的基因转录表达[J]. 中国沙漠, 2017 , 37(4) : 705 -713 . DOI: 10.7522/j.issn.1000-694X.2016.00167

Abstract

Desert plants are subjected to multiple environmental factors in their natural habitats.However,little information is available about the mechanism of plant response to multiple stress factors at the same time.In this study,we analyzed the gene expression of desert plant Reaumuria soongorica in response to drought stress,enhanced UV-B radiation and their combination of the two at the transcription level by using the digital gene expression profiling technique.The results showed that differentially expressed genes (DEGs) classified into two groups:up-regulated genes and down-regulated genes.Compared to the control group,the numbers of up-regulated genes were less than that of down-regulated genes in stress treatment groups.Whereas compared to the single factor stress,numbers of total DEGs and up-regulated genes increased significantly in combined stress.The expression profiles between drought stress and UV-B radiation were more similar than that of between combined and single factor,but there still had 356 up-regulated and 248 down-regulated genes induced specifically by combined stress.For the expressed amount of DEGs,most of the gene expression changed from 2 to 5 fold,and also found some highly expressed genes (more than 100 fold).Analysis of Gene Ontology function enrichment and kyoto encyclopedia of genes and genomes pathway enrichment showed that some biological processes such as carbon fixation expressed significantly in combined stress than in single stress.Different metabolic pathways showed different expression levels in response to different stresses.The results suggested that there were great difference in the response mechanisms of plant between single factor and combined stress at gene transcription level.

参考文献

[1] Duan B,Xuan Z,Zhang X,et al.Interactions between drought,ABA application and supplemental UV-B in Populus yunnanensis[J].Physiologia Plantarum,2008,134(2):257-269.
[2] Poulson M E,Boeger M R T,Donahue R A.Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime[J].Photosynthesis Research,2006,90(1):79-90.
[3] Alexieva V,Sergiev I,Mapelli S,et al.The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat[J].Plant Cell and Environment,2001,24(12):1337-1344.
[4] Kilian J,Whitehead D,Horak J,et al.The AtGenExpress global stress expression data set:protocols,evaluation and model data analysis of UV-B light,drought and cold stress responses[J].Plant Journal,2007,50(2):347-363.
[5] Schmidt A M,Ormrod D P,Livingston N J,et al.The interaction of ultraviolet-B radiation and water deficit in two Arabidopsis thaliana genotypes[J].Annals of Botany,2000,85(4):571-575.
[6] 沈嘉,郭东锋,姜超强,等.UV-B辐射和干旱胁迫对烟草逆境生理指标的影响[J].热带作物学报,2015,36(2):329-333.
[7] Jambunathan N,Puckette M,Mahalingam R.Transcriptomic analysis of multiple environmental stresses in plants[M].Netherlands:Springer,2009.
[8] Bohler S,Sergeant K,Jolivet Y,et al.A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought[J].Proteomics,2013,13(10/11):1737-1754.
[9] 耿兴敏.植物逆境交叉胁迫适应性研究进展[J].林业科技开发,2014,28(4):14-18.
[10] Madronich S,Mckenzie R L,Bj rn L O,et al.Changes in biologically active ultraviolet radiation reaching the Earth's surface[J].Photochemical & Photobiological Sciences,2003,2(1):5-15.
[11] Engelbrecht B M J,Comita L S,Condit R,et al.Drought sensitivity shapes species distribution patterns in tropical forests[J].Nature,2007,447(7140):80-82.
[12] 刘玉冰,张腾国,安黎哲,等.红砂正常和脱水组织中总RNA提取的改进CTAB法[J].中国沙漠,2006,26(4):600-603.
[13] Audic S,Claverie J M.The significance of digital gene expression profiles[J].Genome Research,1997,7(10):986-95.
[14] Benjamini Y,Yekutieli D.The control of the false discovery rate in multiple testing under dependency[J].Annals of Statistics,2001,29(4):1165-1188.
[15] Sanghera G S,Wani S H,Hussain W,et al.Engineering cold stress tolerance in crop plants[J].Current Genomics,2011,12(1):30-43.
[16] Lata C,Prasad M.Role of DREBs in regulation of abiotic stress responses in plants[J].Journal of Experimental Botany,2011,62(14):4731-4748.
[17] Rizhsky L,Liang H,Mittler R.The combined effect of drought stress and heat shock on gene expression in tobacco[J].Plant Physiology,2002,130(3):1143-1151.
[18] Rizhsky L,Mittler R.When defense pathways collide.The response of Arabidopsis to a combination of drought and heat stress[J].Plant Physiology,2004,134(4):1683-1696.
[19] Tian X R,Lei Y B.Physiological responses of wheat seedlings to drought and UV-B radiation.Effect of exogenous sodium nitroprusside application[J].Russian Journal of Plant Physiology,2007,54(5):676-682.
[20] Pastori G M,Foyer C H.Common components,networks,and pathways of cross-tolerance to stress.The central role of "redox" and abscisic acid-mediated controls[J].Plant Physiology,2002,129(2):460-468.
[21] Johnson S M,Lim F L,Finkler A,et al.Transcriptomic analysis of Sorghum bicolor,responding to combined heat and drought stress[J].BMC Genomics,2014,15(1):1-19.
[22] 王龙飞.UV-B辐射及干旱胁迫对3种胡枝子叶片光合特性及花青素含量的影响[D].陕西杨凌:西北农林科技大学,2013.
[23] 徐海明,张兴文,李东洺,等.干旱条件下增加UV-B辐射对大豆叶片光合色素的影响[J].东北农业大学学报,2010,41(3):12-16.
[24] 张莉娜,安黎哲,冯虎元.增强UV-B辐射和干旱对春小麦光合作用及其生长的影响[J].西北植物学报,2010,30(5):981-986.
[25] Lepiniec L,Debeaujon I,Routaboul J M,et al.Genetics and biochemistry of seed flavonoids[J].Annual Review of Plant Biology,2006,57(1):405-430.
[26] Taylor L P,Grotewold E.Flavonoids as developmental regulators[J].Current Opinion in Plant Biology,2005,8(3):317-323.
[27] Sharma P,Dubey R S.Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings[J].Plant Growth Regulation,2005,46(3):209-221.
文章导航

/