img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
水文与水资源

呼图壁河基流变化及其影响因素

  • 王敬哲 ,
  • 刘志辉 ,
  • 塔西甫拉提· ,
  • 特依拜 ,
  • 张文娜
展开
  • 1. 新疆大学 资源与环境科学学院, 新疆 乌鲁木齐 830046;
    2. 新疆大学 教育部绿洲生态重点实验室, 新疆 乌鲁木齐 830046;
    3. 新疆大学 干旱生态环境研究所, 新疆 乌鲁木齐 830046;
    4. 新疆大学 干旱半干旱区可持续发展国际研究中心, 新疆 乌鲁木齐 830046;
    5. 新疆维吾尔自治区环境监测总站, 新疆 乌鲁木齐 830011
王敬哲(1992-),男,河南郑州人,博士研究生,主要从事水文水资源方向的研究。E-mail:wjzf-682@163.com

收稿日期: 2016-03-28

  修回日期: 2016-05-19

  网络出版日期: 2017-07-20

基金资助

水利部公益性行业科研专项(201301103) ;国家自然科学基金面上项目(41171023)

Variation of the Baseflow and Its Causes of Hutubi River

  • Wang Jinzhe ,
  • Liu Zhihui ,
  • Tashpolat· ,
  • Tiyip ,
  • Zhang Wenna
Expand
  • 1. School of Resources and Environment Science, Xinjiang University, Urumqi 830046, China;
    2. Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi 830046, China;
    3. Institute of Arid Ecology and Environment, Xinjiang University, Urumqi 830046, China;
    4. International Center for Desert Affairs-Research on Sustainable Development in Arid and Semi-arid Lands, Xinjiang University, Urumqi 830046, China;
    5. Xinjiang Environmental Monitoring Centre, Urumqi 830011, China

Received date: 2016-03-28

  Revised date: 2016-05-19

  Online published: 2017-07-20

摘要

基于石门水文站实测日径流数据和流域气象资料,运用平滑最小值法和递归数字滤波法对呼图壁河流量过程进行了基流分割研究。在不同的时间尺度上探讨了呼图壁河年均基流量和基流指数(BFI)的变化特征,以及不同水平年基流量与BFI的变化特征,并按照不同水平年份的划分从气温和降水两方面剖析影响基流变化的因素。结果表明:研究区内平滑最小值法优于递归数字滤波法。呼图壁河基流量的年内分布表现为单峰型,7月达到最大值,BFI先减小后增加,5月最小,枯水期BFI接近1。呼图壁河年基流量呈现为增加的趋势,多年平均基流量为3.67×108 m3,多年平均BFI为0.78,呈递减趋势。枯水年份的平均BFI为0.78,平水年为0.76,丰水年为0.74。春秋两季气温和降水对呼图壁河基流量的影响最为显著,不同的水平年份相关系数也存在一定差异。各年份气温对春秋两季基流量的影响均大于降水,说明气温是呼图壁河基流变化的关键性因素。

本文引用格式

王敬哲 , 刘志辉 , 塔西甫拉提· , 特依拜 , 张文娜 . 呼图壁河基流变化及其影响因素[J]. 中国沙漠, 2017 , 37(4) : 793 -801 . DOI: 10.7522/j.issn.1000-694X.2016.00067

Abstract

Based on daily runoff data of Hutubi River Shimen station,the smoothed minimum method and recursive digital filter were used for base flow separation,the recursive digital filter and smoothed minimum method were used for base flow separation.Annual and interannual variations in baseflow,baseflow index (BFI),and the variations in BFI for different water level years in Hutubi River basin as well as the main controlling factors (temperature and precipitation) were investigated in different time scales.It is found that the smoothed minimum method is more suitable than recursive digital filter in the study area.Annual distribution of baseflow is in unimodal type,with the maximum value appearing in July,the BFI distribution in a year,with the minimum BFI value in May.BFI is close to 1 in dry year.The average annual base flow is 3.67×108 m3.The base flow is increasing in the Hutubi river.The base flow index is 0.78 in the study area,it is in slowly decreasing trend.Averaged BFI from the smoothed minimum method in dry years,average years,and wet years were 0.78,0.76 and 0.74,respectively.Temperature and precipitation are two important factors,and their importance to baseflow varies with seasons in different water level years.The results implied that the effect of temperature on baseflow was higher than that of precipitation in spring and autumn.Temperature plays a leading role in the effects on baseflow in spring and autumn,and temperature is a key affecting factor on baseflow of Hutubi River.

参考文献

[1] 党素珍,王中根,刘昌明.黑河上游地区基流分割及其变化特征分析[J].资源科学,2011,33(12):2232-2237.
[2] Mwakalila S,Feyen J,Wyseure G.The influence of physical catchment properties on baseflow in semi-arid environments[J].Journal of Arid Environments,2002,52(2):245-258.
[3] Eckhardt K.A comparison of baseflow indices,which were calculated with seven different baseflow separation methods[J].Journal of Hydrology,2008,352(1):168-173.
[4] 陈利群,刘昌明,李发东.基流研究综述[J].地理科学进展,2006,25(1):1-15.
[5] 雷泳南,张晓萍,张建军,等.窟野河流域河川基流量变化趋势及其驱动因素[J].生态学报,2013,33(5):1559-1568.
[6] Abdulla F A,Lettenmaier D P,Liang X.Estimation of the ARNO model baseflow parameters using daily streamflow data[J].Journal of Hydrology,1999,222(1):37-54.
[7] 刘希胜,李其江,段水强,等.黄河源径流演变特征及其对降水的响应[J].中国沙漠,2016,36(6):1721-1730.
[8] 陈利群,刘昌明,杨聪,等.黄河源区基流估算[J].地理研究,2006,25(4):659-665.
[9] 林凯荣,张文华,郭生练.流量过程线分割的新方法——应用分析[J].水文,2006,26(4):15-20.
[10] 熊立华,郭生练.采用非线性水库假设的基流分割方法及应用[J].武汉大学学报:工学版,2005,38(1):27-29.
[11] 李成六.基于SWAT模型的石羊河流域上游山区径流模拟研究[D].兰州:兰州大学,2011.
[12] 程磊,徐宗学,罗睿,等.SWAT在干旱半干旱地区的应用——以窟野河流域为例[J].地理研究,2009(1):65-73.
[13] 李姝蕾,鲁程鹏,李伟,等.长江螺山站50年来基流演变趋势分析[J].水资源与水工程学报,2015,25(5):128-131.
[14] 豆林,黄明斌.自动基流分割方法在黄土区流域的应用研究[J].水土保持通报,2010,30(3):107-111.
[15] 张文娜,刘志辉,王荣军,等.数字滤波法在天山北坡军塘湖河流域流量基流分割中的应用[J].干旱区研究,2015,32(1):35-39.
[16] 黄国如.流量过程线的自动分割方法探讨[J].灌溉排水学报,2007,26(1):73-78.
[17] 林凯荣,陈晓宏,江涛,等.数字滤波进行基流分割的应用研究[J].水力发电,2008,34(6):28-30.
[18] 崔玉洁,刘德富,宋林旭,等.数字滤波法在三峡库区香溪河流域基流分割中的应用[J].水文,2011,31(6):18-23.
[19] 张革,刘德富,宋林旭,等.不同基流分割方法在香溪河流域的应用对比研究[J].长江流域资源与环境,2013,22(2):164-171.
[20] Vogel R M,Kroll C N.Estimation of baseflow recession constants[J].Water Resources Management,1996,10(4):303-320.
[21] Arnold J G,Muttiah R S,Srinivasan R,et al.Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin[J].Journal of Hydrology,2000,227(1):21-40.
[22] Smettem K,Underwood S,Callow N.Impacts of land use and climate change on baseflow in catchments along the south coast of Western Australia[C].EGU General Assembly Conference Abstracts.2014,16:3187.
[23] 白乐,李怀恩,何宏谋.降水和人类活动对秃尾河流域基流的影响[J].自然资源学报,2014,29(12):2078-2088.
[24] 陈利群,刘昌明,郝芳华,等.黄河源区基流变化及影响因子分析[J].冰川冻土,2006,28(2):141-148.
[25] 董薇薇,丁永建,魏霞.祁连山疏勒河上游基流变化及其影响因素分析[J].冰川冻土,2014,36(3):661-669.
[26] 王敬哲,刘志辉,姚俊强,等.呼图壁河水沙年内分配特征及同步性变化分析[J].水土保持研究,2016,23(5):152-157.
[27] 耿峻岭,高玲,陈建江,等.新疆呼图壁河流域水文特征分析[J].干旱区研究,2005,22(3):371-376.
[28] 聂敏,刘志辉,刘洋,等.基于PCA和BP神经网络的径流预测[J].中国沙漠,2016,36(4):1144-1152.
[29] Nathan R J,Mc Mahon T A.Evaluation of automated techniques for base flow and recession analyses[J].Water Resources Research,1990,26:1465-1473.
[30] Aksoy H,Kurt I,Eris E.Filtered smoothed minima baseflow separation method[J].Journal of Hydrology,2009,372(1):94-101.
[31] 董晓华,邓霞,薄会娟,等.平滑最小值法与数字滤波法在流域径流分割中的应用比较[J].三峡大学学报:自然科学版,2010,32(2):1-4.
文章导航

/