Graded-standard deviation can be used to extract the sensitive grain-size component in sedimentary sequences. In this paper, multiple aeolian sand/paleosol sedimentary sections in eastern Qinghai Lake were analyzed by this method. The results showed that division had an influence on sensitive components extraction result. The coarse sensitive components had larger standard deviation value than fine-grained components extracted by the logarithmic graded-standard deviation, while using linear graded-standard deviation, the extracted fine grained components were more sensitive to environmental changes; Fine grain sensitive component extracted by two methods had a great difference, and coarse grain were relatively consistent, suggesting that graded. When using graded standard deviation method to extract environmental sensitive components, both methods could extract coarse sensitive components effectively, meanwhile linear graded-standard deviation could obtain better effect in extracting fine grained sensitive components. With the method of linear graded-standard deviation, we found that the clay fraction (0-4 μm) can be used as a proxy of summer monsoon, while medium and fine sand fraction (144-321 μm) should be used for indicating the strength of aeolian activity, and very fine sand component (60-126 μm) may be influenced by local terrain, its paleoclimatic significance remains to be further identified.
[1] An Z S,Colman S M,Zhou W J,et al.Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J].Scientific Reports,2012,2(8):1036-1036.
[2] 徐叔鹰,徐德馥.青海湖东岸的风沙堆积[J].中国沙漠,1983,3(3):11-17.
[3] 徐树建,潘保田,高红山等.末次间冰期-冰期旋回黄土环境敏感粒度组分的提取及意义[J].土壤学报,2006,43(2):183-189.
[4] 牛光明,强明瑞,宋磊,等.5000 a来柴达木盆地东南缘风成沉积记录的冬季风演化[J].中国沙漠,2010,30(5):1030-1039.
[5] Sun D H,Bloemendal J,Rea D K,et al.Grain-size distribution function of polygonal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components[J].Sedimentary Geology,2002,152:263-277.
[6] Ding Z L,YU Z W,Rutter N W,et al.Towards an orbital time scale for Chinese loess deposits[J].Quaternary Science Reviews,1994,13:39-70.
[7] Lu H Y,An Z S.Paleoclimatic significances of grain size of loess paleosol deposit in Chinese Loess Plateau[J].Science in China:Series D,1998,41(6):626-631.
[8] 孙有斌,高抒,李军.边缘海陆源物质中环境敏感粒度组分的初步分析[J].科学通报,2003,48(1):83-86.
[9] Xiao J L,Porter S C,An Z S,et al.Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000Yr[J].Quaternary Research,1995,43:22-29.
[10] 孙有斌,鹿化煜,安芷生.黄土-古土壤中石英颗粒的粒度分布[J].科学通报,2000,45(19):2094-2097.
[11] Prins M A,Postma G,Weltje G J.Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary:the Makran continental slope[J].Marine Geology,2000,169:351-371.
[12] 孙东怀,安芷生,苏瑞侠.古环境中沉积物粒度组分分离的数学方法及应用[J].自然科学进展,2001,11(3):269-276.
[13] 汪海斌,陈发虎,张家武.黄土高原西部地区黄土粒度的环境指示意义[J].中国沙漠,2002,22(1):21-26.
[14] 徐树建.风成沉积物环境敏感粒度指标的提取及意义[J].干旱区资源与环境,2007,21(3):95-98.
[15] 安福元.柴达木盆地察尔汗湖相沉积物的粒度分布模式及其环境意义[J].干旱区地理,2013,36(2):212-220.
[16] Boulay S,Colin C,Trentesaux A,et al.Mineralogy and sedimentology of pleistocene sediment in the South China Sea(ODP Site 1144)[J].Proceedings of the Ocean Drilling Program,2003,184:1-21.
[17] 向荣,杨作升,Saito Y,等.济州岛西南泥质区近2300 a来环境敏感粒度组分记录的东亚冬季风变化[J].中国科学D辑:地球科学,2006,36(7):654-662.
[18] 万世明,李安春,Stuut J-B W,等.南海北部ODP1146站粒度揭示的近20 Ma以来东亚季风演化[J].中国科学D辑:地球科学,2007,37(6):761-770.
[19] 鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究[J].科学通报,1997,42(23):2535-2538.
[20] 丁仲礼,孙继敏,刘东生.联系沙漠-黄土演变过程中耦合关系的沉积学指标[J].中国科学D辑:地球科学,1999,29(1):82-87.
[21] 安芷生,Porter S,Kukla G,等.最近13万年黄土高原季风变迁的磁化率证据[J].科学通报,1990,20(7):529-532.
[22] 孙东怀,安芷生,刘东生等.最近150 ka黄土高原夏季风气候格局的演化[J].中国科学D辑:地球科学,1996,26(5):417-422.
[23] 郝青振,郭正堂.1.2 Ma以来黄土-古土壤序列风化成壤强度的定量化研究与东亚夏季风演化[J].中国科学D辑:地球科学,2001,31(6):520-528.
[24] 刘东生.黄土与环境[M].北京:科学出版社,1985.
[25] 孙东怀.黄土粒度分布中的超细粒组分及其成因[J].第四纪研究,2006,26(6):928-936.
[26] 黄传琴.黄土剖面粘粒矿物的组成特征及其环境意义[D].北京:中国科学院研究生院,2011.
[27] 管清玉,潘保田,高红山等.粘粒含量——夏季风的良好替代指标[J].干旱区资源与环境,2004,18(8):17-19.
[28] 鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学:D辑,1998,28(3):278-283.
[29] 沈亚萍,张春来,李庆,等.中国东部沙区表层沉积物粒度特征[J].中国沙漠,2016,36(1):150-157.
[30] 崔徐甲,董治宝,罗万银,等.巴丹吉林沙漠高大沙山沉积物粒度特征及其与植被、地貌关系[J].中国沙漠,2015,35(4):857-864.
[31] Pye K,Tsoar H.The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand digenesis in northern Negev,Israel[J].Ecological Society Special Publication,1987,35:139-156.
[32] 隆浩,王乃昂,马海州,等.腾格里沙漠西北缘湖泊沉积记录的区域风沙特征[J].沉积学报,2007,25(4):626-631.
[33] 李明治.共和盆地末次盛冰期以来的风沙活动历史与气候变化[D].兰州:兰州大学,2012.
[34] 姚正毅,李晓英,肖建华.青海湖滨土地沙漠化驱动机制[J].中国沙漠,2015,35(6):1429-1437.
[35] 温小浩,李保生,孟洁,等.150~20 ka BP福建东部平潭岛海岸风成沉积的粒度特征及其环境意义[J].中国沙漠,2015,35(6):1473-1482.
[36] 舒培仙,牛东风,李保生,等.毛乌素沙地现代沙丘沙的粒度特征及其意义[J].中国沙漠,2016,36(1):158-166.