img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

祁连山排露沟流域降水δ18O和δD特征及水汽来源

  • 冯芳 ,
  • 冯起 ,
  • 刘贤德 ,
  • 刘蔚 ,
  • 金爽
展开
  • 1. 江苏师范大学 地理测绘与城乡规划学院, 江苏 徐州 221116;
    2. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000;
    3. 甘肃省祁连山水源涵养林研究院, 甘肃 张掖 734000
冯芳(1984-),女,湖北荆州人,助理研究员,主要从事高寒山区水化学和环境化学研究。E-mail:fengfangjs2006@163.com

收稿日期: 2016-03-30

  修回日期: 2016-10-18

  网络出版日期: 2017-09-20

基金资助

国家自然科学基金青-基金项目(41501085);中国科学院内陆河流域生态水文重点试验室开放基金项目(KLEIRB-ZS-17-06);中国博士后科学基金项目(2013M532094)

Characteristics of δ18O and δD in Precipitation and Moisture Sources of Pailugou Catchment in the Qilian Mountains

  • Feng Fang ,
  • Feng Qi ,
  • Liu Xiande ,
  • Liu Wei ,
  • Jin Shuang
Expand
  • 1. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China;
    2. Cold and Arid Region Environment and Engineering Research Institute, Chinese Academy Sciences, Lanzhou 730000, China;
    3. Institute of Water Resources Conservation Forests in the Qilian Mountains, Zhangye 734000, Gansu, China

Received date: 2016-03-30

  Revised date: 2016-10-18

  Online published: 2017-09-20

摘要

降水氢氧同位素受气温、降水量、海拔、水汽来源等多种因素控制,是研究区域水文循环过程的重要手段。基于祁连山中段排露沟流域3个站点降水稳定氢氧同位素数据(δ18O、δD、d-excess)和气象观测资料,结合临近GNIP站点监测资料和HYSPLIT 4.9模型对流域降水同位素特征及水汽来源进行分析。结果表明:流域降水δ18O值波动范围大(-32.32‰~+3.23‰),季节性变化明显,冬季δ18O值较低,夏季δ18O值较高。降水δ18O和δD值与日均气温均存在密切正相关关系,即温度效应明显。受山区气候和地理条件影响,各站点局地大气降水线(LMWL)截距和斜率相似;与临近GNIP站点(张掖)进行对比,流域降水明显受局地水汽和二次蒸发影响较少。降水d-excess值表现出与δ18O值相反的季节性变化趋势。结合HYSPLIT 4.9气团轨迹模型,得出流域夏季水汽主要来源西风环流输送,冬季受西风环流和极地气团共同影响。

本文引用格式

冯芳 , 冯起 , 刘贤德 , 刘蔚 , 金爽 . 祁连山排露沟流域降水δ18O和δD特征及水汽来源[J]. 中国沙漠, 2017 , 37(5) : 997 -1005 . DOI: 10.7522/j.issn.1000-694X.2016.00139

Abstract

Hydrogen and oxygen isotopic composition of precipitation affected by a variety of factors, such as temperature, precipitation amount, altitude, vapor source and others, is the important tool for investigating the regional hydrologic cycle. The variations of δD and δ18O values in every rain and snow samples at three stations along the Pailugou catchment from November 2012 to December 2013 were presented in this syudy. The hydrogen and oxygen isotopes in individual precipitation events exhibited extensive variation. The δ18O varied from +32.32‰ to +3.23‰, while the δD values ranged from -254.46‰ to +12.11‰. Results showed that the δ18O displayed a distinct seasonal variation, with enriched values occurred in summer and relatively depleted in winter. There was a statistically significant positive correlation between the δ18O and δD values and local surface air temperature at all the three stations, which was valuable for regional quantitative temperature reconstruction. The Local Meteoric Water Llines (LMWLs) for three stations had similar intercepts and slopes, which reflected the regional climate feature. The nearest Global Network of Isotopes in Precipitation (GNIP) station (Zhangye), compared to the LMWLs for the Pailugou catchment, showed the obvious recycled moisture and secondary evaporation effects with lower intercept and slope. Additionally, the d-excess parameter in precipitation exhibited an anti-phase seasonal variability with the δ18O. The 96-hr back trajectories for each precipitation event using the HYSPLIT model indicated a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter.

参考文献

[1] Craig H.Isotopic variations in meteoric waters[J].Science,1961,133:1702-1703.
[2] Gibson J J,Edwards T W D,Birks J,et al.Progress in isotope tracer hydrology in Canada[J].Hydrological Processes,2005,19:303-327.
[3] 张华安,王乃昂,李卓伦,等.巴丹吉林沙漠东南部湖泊和地下水的氢氧同位素特征[J].中国沙漠,2011,31(6):1623-1629.
[4] Kohn M J,Welker J M.On the temperature correlation of δ18O in modern precipitation[J].Earth and Planetary Science Letters,2005,231:87-96.
[5] 陈曦,李志,程立平,等.黄土塬区大气降水的氢氧稳定同位素特征及水汽来源[J].生态学报,2016,36(1):98-106.
[6] 陈衍婷,杜文娇,陈进生,等.厦门地区大气降水氢氧同位素组成特征及水汽来源探讨[J].环境科学学报,2016,36(2):667-674.
[7] 田超,孟平,张劲松,等.黄河小浪底库区降水δD和δ18O季节变化特征及水汽来源[J].应用生态学报,2015,26(12):3579-3587.
[8] Tian L D,Yao T D,Macclune K,et al.Stable isotopic variations in west China:a consideration of moisture sources[J].Journal of Geophysical Research,2007,112(D10)112:185-194.
[9] 郑新军,李彦,徐利岗.乌鲁木齐降水中δ18O的温度和降水强度效应的季节转换[J].中国沙漠,2016,36(2):491-498.
[10] 李嘉竹,刘贤赵.氢氧稳定同位素在SPAC水分循环中的应用研究进展[J].中国沙漠,2008,28(4):787-794.
[11] 李广,章新平,吴华武,等.云南大气降水中δ18O与气象要素及水汽来源之间的关系[J].自然资源学报,2014,29(6):1043-1052.
[12] 童佳荣,周明亮,孙自永,等.基于D、18O同位素和HYSPLIT4气团轨迹模型的黑河上游降水水汽来源研究[J].干旱区资源与环境,2016,30(7):151-156.
[13] 朱建佳,陈辉,巩国丽.柴达木盆地东部降水氢氧同位素特征与水汽来源[J].环境科学,2015,36(8):2784-2790.
[14] 李亚举,张明军,王圣杰,等.我国大气降水中稳定同位素研究进展[J].冰川冻土,2011,33(3):624-633.
[15] Yu W S,Wei F L,Ma Y M,et al.Stable isotope variations in precipitation over Deqin on the southeastern margin of the Tibetan Plateau during different seasons related to various meteorological factors and moisture sources[J].Atmospheric Research,2016,170(15):123-130.
[16] Wang S J,Zhang M J,Hughes C E,et al.Factors controlling stable isotope composition of precipitation in arid conditions:an observation network in the Tianshan Mountains,central Asia[J].Tellus B,2016,68(Supl):289-299
[17] Sjostrom J,Welker J M.The influence of air mass source on the seasonal isotopic composition of precipitation,eastern USA[J].Journal of Geochemical Exploration,2009,102:103-112.
[18] Pfahl S,Wernli H.Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean[J].Journal of Geophysical Research,2008,113(D20):269-277.
[19] He Y Q,Pang H X,Theakstone W H,et al.Isotopic variations in precipitation at Bangkok and their climatological significance[J].Hydrological Processes,2006,20:2873-2884.
[20] Aragu s L,Froehlich K,Rozanski K.Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture[J].Hydrological Processes,2000,14(8):1341-1355.
[21] Hughes C E,Crawford J.Spatial and temporal variation in precipitation isotopes in the Sydney Basin,Australia[J].Journal of Hydrology,2013,489:42-55.
[22] Pang Z H,Kong Y L,Froehlich,et al.Processes affecting isotopes in precipitation of an arid region[J].Tellus B,2011,63:352-359.
[23] Feng F,Li Z Q,Zhang M J,et al.Deuterium and oxygen 18 in precipitation and atmospheric moisture in the upper Urumqi River Basin,eastern Tianshan Mountains[J].Environmental Earth Science,2013,68(4):1199-1209.
[24] 姚檀栋,孙维贞,蒲健辰,等.内陆河流域系统降水中的稳定同位素[J].冰川冻土,2000,22(1):15-22.
[25] 陈粉丽,张明军,马潜,等.兰州及其周边区域大气降水δ18O特征及其水汽来源[J].环境科学,2013,34(10):3755-3763.
[26] 刘忠芳,田立德,姚檀栋,等.中国大气降水中δ18O的空间分布[J].科学通报,2009,54(6):804-811.
[27] 郭小燕,冯起,李宗省,等.敦煌盆地降水稳定同位素特征及水汽来源[J].中国沙漠,2015,35(3):715-723.
[28] Li Z X,Gao Y,Wang Y M,et al.Can monsoon moisture arrive in the Qilian Mountains in summer?[J].Quaternary International,2015,358:113-125.
[29] Iacumin P,Venturelli G,Selmo E.Isotopic features of rivers and groundwater of the Parma Province (Northern Italy) and their relationships with precipitation[J].Journal of Geochemical Exploration,2009,102:56-62.
[30] 宁宝英,何元庆,和献中,等.黑河流域水资源研究进展[J].中国沙漠,2008,28(6):1180-1185.
[31] 吴锦奎,杨淇越,丁永建,等.黑河流域大气降水稳定同位素变化及模拟[J].环境科学,2011,32(7):1857-1866.
[32] 张应华,仵彦卿.黑河流域大气降水水汽来源分析[J].干旱区地理,2008,31(3):403-408.
[33] 金铭,车宗玺,敬文茂,等.祁连山水源涵养林区降水及温度时空变化研究[J].中国沙漠,2012,32(4):1071-1076.
[34] 王金叶,王彦辉,李新,等.祁连山排露沟流域水分状况与径流形成[J].冰川冻土,2006,28(1):62-69.
[35] Chang Z Q,Feng Q,Si J H,et al.Analysis of the spatial and temporal changes in soil CO2 flux in alpine meadow of Qilian Mountain[J].Environmental Geology,2009,58:483-490.
文章导航

/