img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

红砂(Reaumuria soongorica)、珍珠(Salsola passerine)蒸腾耗水规律的尺度整合

  • 金艳霞 ,
  • 王新平 ,
  • 张亚峰 ,
  • 潘颜霞 ,
  • 虎瑞 ,
  • 徐浩杰 ,
  • 石薇
展开
  • 1. 中国科学院西北生态环境资源研究院 沙坡头沙漠研究试验站, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
金艳霞(1986-),女,甘肃陇西人,博士研究生,主要进行荒漠植被蒸散耗水研究。E-mail:jinyanx526@163.com

收稿日期: 2017-04-19

  修回日期: 2017-08-28

  网络出版日期: 2018-03-20

基金资助

国家自然科学基金项目(41530750,41371101)

Transpiration of Reaumuria soongorica and Salsola passerine at Different Scales

  • Jin Yanxia ,
  • Wang Xinping ,
  • Zhang Yafeng ,
  • Pan Yanxia ,
  • Hu Rui ,
  • Xu Haojie ,
  • Shi Wei
Expand
  • 1. Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-04-19

  Revised date: 2017-08-28

  Online published: 2018-03-20

摘要

利用LI-6400XT便携式光合仪和大型称重式蒸渗仪研究红砂(Reaumuria soongorica)、珍珠(Salsola passerina)灌丛在干旱和湿润条件下的蒸腾耗水特征,并探讨从叶片到灌丛尺度转换中,在非破损状态下植物叶面积的可靠测定方法。结果表明:用图像法获得非破损状态下植物叶面积是可行的,基于植物叶面积通过尺度转换得到灌丛尺度的蒸腾量与蒸渗仪测定的蒸腾量具有较高一致性(r=0.9752,P<0.01)。干旱条件下,红砂蒸腾速率的日变化呈单峰曲线,主要影响因素为气孔导度(P<0.01);湿润条件下,红砂和珍珠蒸腾速率的日变化均呈单峰曲线,主要的影响因素为气孔导度、空气相对湿度、饱和蒸汽压亏缺和光合有效辐射(P<0.01)。珍珠水分利用效率和气孔限制值均高于红砂。此外,干旱条件下红砂的水分利用效率和气孔限制均高于湿润条件。通过尺度转换得到的灌丛尺度的蒸腾量和蒸渗仪测定的蒸腾量的结果均表明,红砂的蒸腾量始终大于珍珠,且随土壤湿润状况的改善而增大。红砂灌丛蒸腾量与蒸散量之比在干旱条件下(T/ET=21%)较湿润条件下高(约2%)。同时,红砂灌丛T/ET高于珍珠灌丛。因此,基于图像法获得的叶面积参数可用于从叶片(便携式光合仪法)到植株及灌丛水平(称重式蒸渗仪法)的植物蒸腾耗水尺度转换研究。

本文引用格式

金艳霞 , 王新平 , 张亚峰 , 潘颜霞 , 虎瑞 , 徐浩杰 , 石薇 . 红砂(Reaumuria soongorica)、珍珠(Salsola passerine)蒸腾耗水规律的尺度整合[J]. 中国沙漠, 2018 , 38(2) : 286 -293 . DOI: 10.7522/j.issn.1000-694X.2017.00071

Abstract

The transpiration (T) characteristics of Reaumuria soongorica and Salsola passerine under drought and wet conditions were studied by LI-6400XT portable photosynthesis system combined with large lysimeter. The reliable determination method of leaf area of plant during switching of transpiration from leaf scale to shrub scale under non-destructive state was discussed in the study. The results showed that:it is feasible to obtain the leaf area of plant by image method under the condition of ensuring the normal growth of them. The transpiration obtained by switching from leaf scale to shrub scale based on the leaf area was higher consistency with lysimeter measurement (r=0.9752,P<0.01). Under the drought condition, transpiration rate diurnal changes of R. soongorica was unimodal and the main influencing factor was stomatal conductance (P<0.01). Under the wet condition, transpiration rate diurnal changes of R. soongorica and S. passerine were all unimodal and the main influencing factors were stomatal conductance, relative humidity, vapor pressure deficit and Photosynthetic radiation (P<0.01). In addittion, the water use efficiency and stomatic limitation of S. passerine were higher than that of R. soongorica. Moreover, the water use efficiency and stomatic limitation of R. soongorica under the drought condition were higher than those under the wet condition. The amount of shrub level transpiration measured by scale conversion and by weighing lysimeter were all indicated that the transpiration of R. soongorica was always greater than that of S. passerine at the leaf or shrub scale, and increased with the improvement of soil wetness. Under the drought condition, the ratio of transpiration to evapotranspiration (T/ET=21%) of R. soongorica was higher about 2% than that under the wet condition. Therefore, the leaf area parameters obtained by the image method can be used to study the conversion of plant transpiration from leaf (portable photosynthesis method) to plant and shrub level (lysimeter method).

参考文献

[1] Trenberth K E,Smith L,Qian T T,et al.Estimates of the global water budget and its annual cycle using observational and model data[J].Journal of Hydrometeorology,2007(8):758-769.
[2] Jasechko S,Sharp Z D,Gibson J J,et al.Terrestrial water fluxes dominated by transpiration[J].Nature,2013,496:347-351.
[3] 石磊,盛后财,满秀玲,等.不同尺度林木蒸腾耗水测算方法述评[J].南京林业大学学报:自然科学版,2016,40(4):149-156.
[4] Moran M S,Scott R L,Keefer T O,et al.Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature[J].Agricultural and Forest Meteorology,2009,149(1):59-72.
[5] Shuttleworth W J.Evapotranspiration measurement methods[J].Southwest Hydrology,2008,7(1):22-23.
[6] Reynolds J F,Kemp P R,Tenhunen J D.Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert:a modeling analysis[J].Plant Ecology,2000,150:145-159.
[7] Xu H,Li Y.Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J].Plant and Soil,2006,285(1):5-17.
[8] Gee G W,Newman B D,Green S R,et al.Passive wick fluxmeters:design considerations and field applications[J].Water Resources Research,2009,45:1-18.
[9] Yang G J,Pu R L,Zhao C J,et al.Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations[J].Agricultural Water Management,2014,133:34-43.
[10] Marek G,Gowda P,Marek T,et al.Estimating preseason irrigation losses by characterizing evaporation of effective precipitation under bare soil conditions using large weighing lysimeters[J].Agricultural Water Management,2016,169:115-128.
[11] 张志山,李新荣,何明珠,等.沙漠人工植被蒸渗池测定及蒸腾量推算[J].草业学报,2006,15(6):32-37.
[12] 冯起,司建华,席海洋,等.极端干旱区天然植被耗水规律试验研究[J].中国沙漠,2008,28(6):1095-1103.
[13] 刘家琼,邱明新,蒲锦春,等.我国荒漠典型超旱生植物——红砂[J].植物学报,1982,24(5):485-488.
[14] 丘明新,刘家琼.珍珠植物群落的研究[J].生态学报,1982,2(4):311-318.
[15] 刘家琼,蒲锦春,刘新民.我国沙漠中部地区主要不同生态类型植物的水分关系和旱生结构比较研究[J].植物学报,1987,29(6):662-673.
[16] 刘家琼,黎志坚,蒲锦春.我国沙漠中部地区主要不同生态类型植物脯氨酸的累积、光合、呼吸和叶绿素含量[J].植物学报,1988,30(1):85-95.
[17] 梁学功,王刚.沙坡头人工固沙区种子库动态及其对植被演替方向的预测[M]//沙坡头沙漠试验研究站年报.兰州:甘肃科学技术出版社,1993:108-119.
[18] 王刚,梁学功.沙坡头人工固沙区的种子库动态[J].植物学报,1995,37(3):231-237.
[19] 司建华,冯起,张小由,等.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3):450-459.
[20] 李骁,王迎春,征荣.西鄂尔多斯地区强旱生小灌木水分参数的研究(Ⅰ)[J].中国沙漠,2005,25(4):581-586.
[21] 李骁,王迎春,征荣.西鄂尔多斯地区强旱生小灌木的水分参数[J].应用生态学报,2007,18(5):963-967.
[22] 李新荣,周海燕,王新平,等.中国干旱沙区的生态重建与恢复:沙坡头站60年重要研究进展综述[J].中国沙漠,2016,36(2):247-264.
[23] 周海燕,谭会娟,张志山,等.红砂和珍珠对极端环境的生理响应与调节机制[J].中国沙漠,2012,32(1):24-32.
[24] 肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志,2005,24(6):711-714.
[25] 贾荣亮,周海燕,谭会娟,等.超旱生植物红砂与珍珠光合生理生态日变化特征初探[J].中国沙漠,2006,26(4):631-636.
[26] Youssef T.,Awad M.A.Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer[J].Journal of Plant Growth Regulation,2008,27:1-9.
[27] 王新平,李新荣,康尔泗,等.沙坡头地区固沙植物油蒿、柠条蒸散状况的研究[J].中国沙漠,2002,22(4):363-367.
[28] 潘颜霞,王新平,张亚峰,等.沙坡头地区地形对凝结水形成特征的影响[J].中国沙漠,2014,34(1):118-124.
[29] 严巧娣,苏培玺,高松.干旱程度对C3植物红砂和C4植物珍珠光合生理参数的影响[J].中国沙漠,2012,32(2):364-371.
[30] 周紫鹃,苏培玺,解婷婷,等.不同生境下红砂(Reaumuria soongorica)的生理生化特征及适应性[J].中国沙漠,2014,34(4):1007-1014.
[31] 金鹰,王传宽.植物叶片水力与经济性状权衡关系的研究进展[J].植物生态学报,2015,39(10):1021-1032.
[32] 龚容,高琼.叶片结构的水力学特性对植物生理功能影响的研究进展[J].植物生态学报,2015,39(3):300-308.
[33] 王常顺,汪诗平.植物叶片性状对气候变化的响应研究进展[J].植物生态学报,2015,39(2):206-216.
[34] 杨劲峰,陈清,韩晓日,等.数字图像处理技术在蔬菜叶面积测量中的应用[J].农业工程学报,2002,18(4):155-158.
[35] 钱多.毛乌素沙地混交灌木林蒸腾耗水与水量平衡特征[D].北京:北京林业大学,2016.
[36] Huang L,Zhang Z S,Li X R.Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area:Tengger Desert,China[J].Hydrological Processes,2010,24:1248-1253.
[37] 吕扬.科尔沁沙丘-草甸相间地区黄柳和小叶锦鸡儿光合、耗水特性研究[D].呼和浩特:内蒙古农业大学,2016.
[38] 赵春彦,司建华,冯起,等.胡杨(Populus euphratica)蒸腾耗水对小降雨事件的响应[J].中国沙漠,2017,37(5):942-949.
[39] 种培芳,姬江丽,李毅,等.红砂(Reaumuria soongorica)对大气CO2浓度升高及降水变化的光合生理响应[J].中国沙漠,2017,37(4):714-723.
[40] Wolf A,Anderegg W R L,Pacala S W.Optimal stomatal behavior with competition for water and risk of hydraulic impairment[J].Proceedings of the National Academy of Sciences of the United States of America,2016:113(46):E7222-E7230.
[41] Jin J,Wang Q.Hyperspectral indices based on first derivative spectra closely trace canopy transpiration in a desert plant[J].Ecological Informatics,2016,35:1-8.
文章导航

/