Annual plant species are the main component of the vegetation in arid and semi-arid desert regions, with their unique traits as the good candidates for the study of many key bio-ecological issues. This paper studied the response of various salt-alkaline stress on seed germination and growth of annual plant Bassia dasyphylla in desert region. Thirty different salt-alkaline ecological conditions, which evenly covered all the cases within the ranges of 50-250 mmol·L-1 salinity and 7.10-10.19 pH values, were simulated by mixtures of varied proportions of sodium salts of chloride, carbonate, bicarbonate and sulphate. The germination indexes of germination rate, germination speed, germination index, seeding vigor index and growth indices of shoot length, root length, fresh weigh were determined. The results showed that germination indexes and growth indices of treatment group were significantly lower than control group, were both decreased with increasing salinity and pH, and were found significant different (P<0.05) from the negative control group. All of the indexes were also restraining affected by salinity, pH and their interactions (P<0.05). The order of rejection capability of sodium salts of chloride, carbonate, bicarbonate and sulphate was Na2CO3 > NaHCO3 > NaCl > Na2SO4. The effects of the interaction between high alkalinity and salinity are more severe than those of either salt or alkali stress, and such a cooperative interaction results in more sensitive responses of seed germination and seedling growth of B. dasyphylla. Salinity was the dominant factor for seed germination under mixed salt-alkaline stress conditions, and pH changed into the dominant factor for seedling establishment. Further, It was concluded that the mixed salt-alkaline stresses, which differ from either salt or alkali stress, emphasize the significant interaction between salt concentration (salinity) and salt component (alkalinity).
[1] 李雪华,李晓兰,蒋德明,等.干旱半干旱荒漠地区一年生植物研究综述[J].生态学杂志,2006,25(7):851-856.
[2] Goldblatt P.Analysis of the flora of southern Africa:Its characteristics,relationships and origins[J].Annals of the Missouri Botanical Garden,1978,65:369-436.
[3] Boulos L,Al-Dosari M.Checklist of the flora of Kuwait[J].Journal of the University of Kuwait (Science),1994,21:203-218.
[4] 张德魁,马全林,刘有军,等.河西走廊荒漠区一年生植物组成及其分布特征[J].草业科学,2009,26(12):37-41.
[5] 梁存柱,刘钟龄,朱宗元,等.阿拉善荒漠区一年生植物层片物种多样性及其分布特征[J].应用生态学报,2003,14(6):897-903.
[6] 中国科学院宁夏和内蒙古植被考察队.内蒙古植被[M].北京:科学出版社,1985.
[7] 张立运.古尔班通古特沙漠生物多样性的一般特征[J].生态学报,2002,22(11):1923-1932.
[8] Gutterman Y.Environmental factors and survival strategies of annual plant species in the Negev Desert,Israel[J].Plant Species Biology,2000,15:113-125.
[9] Tevis L Jr.Germination and growth of ephemerals induced by sprinkling a sandy desert[J].Ecology,1958,39:681-688.
[10] Gutterman Y,Evenari M.The influences of amounts and distribution of irrigation during the hot and dry season on emergence and survival of some desert winter annual plants in the Negev Desert[J].Israel Journal of Plant Sciences,1994,42:1-14.
[11] Gutterman Y.Seed germination in desert plants[M].Heidelberg,Germany:Springer-Verlag,1993.
[12] 徐彩琳,李自珍.荒漠一年生植物小画眉草的种群动态调节与模拟[J].西北植物学报,2002,22(6):1415-1420.
[13] Kevin J R,Andrew R D.Seed aging,delayed germination and reduced competitive ability in Bromus tectorum[J].Plant Ecology,2001,155:237-243.
[14] 石勇,刘源,殷恒霞,等.红砂(Reaumuria soongarica)种子萌发特性及其局部适应性[J].中国沙漠,2016,36(3):644-650.
[15] 李红颖,刘果厚,韩春荣,等.四合木(Tetraena mongolica)种子萌发出苗对水分和沙埋的响应[J].中国沙漠,2017,36(5):910-916.
[16] Winter E J.Water,Soil and the Plant[M].London,UK:McMillan,1974.
[17] Tanji K K.Nature and extent of agricultural salinity[M]//Tanji K K.Agricultural Salinity Assessment and Management.New York,USA:American Society of Civil Engineers,1990:1-18.
[18] Shi D C,Wang D L.Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag[J].Plant and Soil,2005,271:15-26.
[19] 张科,田长彦,李春俭.一年生盐生植物耐盐机制研究进展[J].植物生态学报,2009,33(6):1220-1231.
[20] Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2006,60(3):324-249.
[21] Machado N N B,Saturnno S M,Bomfim D C,et al.Water stress induced by mannitol and sodium chloride in soybean cultivars[J].Brazilian Archieves of Biology and Technology,2004,47(4):521-529.
[22] 代明龙,王平,孙吉康,等.盐碱胁迫对植物种子萌发的影响及生理生化机制研究进展[J].北方园艺,2015(10):176-179.
[23] 廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展[J].生态学报,2007,27(5):2077-2089.
[24] 王遵亲,祝寿全,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993.
[25] 吕彪,许耀照,赵芸晨.河西走廊内陆盐渍土生物修复与调控研究[J].水土保持通报,2008,28(3):198-200.
[26] 王芳,肖洪浪,赵亮.单盐胁迫对红砂种子萌发的影响[J].种子,2013,32(10):1-11.
[27] Debez A,Hamed B K,Grignon C,et al.Salinity effects on germination,growth,and seed production of the halophyte Cakile maritime[J].Plant Soil,2004,262:179-189.
[28] 刘宝玉,张文辉,刘新成,等.沙枣和柠条种子萌发期耐盐性研究[J].植物研究,2007,27(6):721-728.
[29] Lin J X,Li Z L,Shao S,et al.Effects of various mixed salt-alkaline stress conditions on seed germination and early seedling growth of Leymus chinensis from Songnen grassland of China[J].Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2014,42(1):154-159.
[30] Gao Z W,Zhu H,Gao J C,et al.Germination responses of Alfalfa (Medicago sativa L.) seeds to various salt alkaline mixed stress[J].African Journal of Agricultural Research,2011,6(16):3793-3803.
[31] Bayuclo-Jiménez J S,Craig R,Lynch J P.Salinity tolerance of Phuseolus species during germination and early seedling growth[J].Crop Scicncc,2002,42:1584-1594.
[32] Li R L,Shi F C,Fukuda K.Interactive effects of salt and alkali stresses on seed germination,germination recovery,and seedling growth of a halophyte Spartina alterniflora (Poaceae)[J].The South African Journal of Botany,2010,76:380-387.
[33] Shi D C,Yin L.Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenuiflora (Griseb.) Scribn.et Merr[J].Acta Botanica Sinica 1993,35:144-149.
[34] Shi D C,Yin S J,Yang G H,et al.Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress[J].Acta Botanica Sinica,2002,44:537-540.
[35] Liu J,Zhu J K.Proline accumulation and salt-stressinduced gene expression in a salt-hypersensitive mutant of Arabidopsis[J].Plant Physiology,1997,114:591-596.
[36] 纪荣花,于磊,鲁为华,等.盐碱胁迫对芨芨草种子萌发的影响[J].草业科学,2011,28(2):245-250.
[37] 代莉慧,蔡禄,吴金华,等.盐碱胁迫对盐生植物种子萌发的影响[J].干旱地区农业研究,2012,30(6):134-138.