img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

东亚沙尘源区晴空和云上沙尘气溶胶特征

  • 茹建波 ,
  • 王天河 ,
  • 李积明 ,
  • 韩颖 ,
  • 张北斗
展开
  • 1. 兰州大学 半干旱气候变化教育部重点实验室, 甘肃 兰州 730000;
    2. 兰州市气象局, 甘肃 兰州 730020
茹建波(1991-),男,甘肃临泽人,硕士研究生,主要从事沙尘气溶胶特性研究。E-mail:lzxnb111@163.com

收稿日期: 2016-12-08

  修回日期: 2017-01-25

  网络出版日期: 2018-03-20

基金资助

国家自然科学基金项目(41375031,41430425,41375021,41305027);兰州大学中央高校基本科研业务费专项资金项目(lzujbky-2017-67)

Characteristics of Dust Aerosol in both Clear-sky and Above-cloud Conditions over East Asia

  • Ru Jianbo ,
  • Wang Tianhe ,
  • Li Jiming ,
  • Han Ying ,
  • Zhang Beidou
Expand
  • 1. Ministry of Education Key Laboratory for Semi-Arid Climate Change, Lanzhou University, Lanzhou 730000, China;
    2. Lanzhou Meteorological Bureau, Lanzhou 730020, China

Received date: 2016-12-08

  Revised date: 2017-01-25

  Online published: 2018-03-20

摘要

利用2006年6月至2012年12月的CALIPSO Level 2 VFM产品、5 km分辨率的Aerosol Profile、Cloud Layer产品以及MISR反演的产品,揭示了东亚地区不同高度层上沙尘的时空分布特征,重点对比分析了东亚沙尘源区晴空和云上沙尘的垂直分布特征、消光系数和光学厚度。结果表明:塔克拉玛干沙漠和戈壁沙漠是东亚沙尘的主要源区,沙尘出现频率具有显著的季节差异,春季最多,夏秋相当,冬季最少,无论在晴空还是有云条件下,前者出现频率大于后者。对于同一地区而言,云上沙尘出现的最大高度较晴空沙尘更高。塔克拉玛干沙漠云上沙尘消光系数高值区集中在2~4 km,而戈壁沙漠则集中在3~5 km,但是在云层之上晴空和云上沙尘消光系数差别不大。塔克拉玛干沙漠以沙尘气溶胶为主,约占总气溶胶光学厚度的77%,晴空和云上沙尘光学厚度平均值分别为0.22和0.15;戈壁沙尘气溶胶约占总气溶胶光学厚度的52%,晴空和云上沙尘光学厚度的平均值分别为0.09和0.06。

本文引用格式

茹建波 , 王天河 , 李积明 , 韩颖 , 张北斗 . 东亚沙尘源区晴空和云上沙尘气溶胶特征[J]. 中国沙漠, 2018 , 38(2) : 372 -383 . DOI: 10.7522/j.issn.1000-694X.2016.00170

Abstract

Based on CALIPSO Level 2 VFM, 5 km Aerosol Profile, 5 km Cloud Layer and MISR products from June 2006 to December 2012, we reveal the spatial and temporal distribution of dust aerosol in different height layers over East Asia. Especially, the vertical distribution, extinction coefficient and optical depth of dust aerosol are contrasted and analyzed in both clear-sky (CS) and above-cloud (AC) conditions over East Asia. The results show that the Taklimakan Desert (TD) and the Gobi Desert (GD) are the main dust source regions over East Asia. The distribution of dust occurrence frequency has significant seasonal difference, with the highest in spring, and the lowest in winter. Dust occurrence frequency over the TD is greater than that over the GD whenever in CS or AC conditions. For the same area, the maximum height of dust aerosol above cloud is higher than that of clear sky, and the high-value areas of dust extinction coefficient above cloud over the TD is at the height of 2-4 km, while that about 3-5 km over the GD. But the dust extinction coefficient above cloud has no significant difference between two conditions. The aerosol over the TD is dominated by dust aerosol, which accounts for 77% of the total aerosol optical depth (AOD). The average dust optical depths (DOD) are 0.22 and 0.15 in CS and AC conditions respectively. The dust aerosol over the GD accounts for 52% of the total AOD, and the average DOD is 0.09 and 0.06 in CS and AC conditions respectively. The results are the basis of further study on dust mass fluxes estimation in CS and AC conditions and even dust-cloud-climate interactions.

参考文献

[1] Charlson R J,Schwartz S E.Climate forcing by anthropogenic aerosols[J].Science,1992,255(5043):423.
[2] Kaufman Y J,Tanré D,Dubovik O,et al.Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing[J].Geophysical Research Letters,2001,28(8):1479-1482.
[3] Twomey S.The influence of pollution on the shortwave albedo of clouds[J].Journal of the atmospheric sciences,1977,34(7):1149-1152.
[4] Huang J,Lin B,Minnis P,et al.Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia[J].Geophysical Research Letters,2006,33(19):.
[5] Huang J,Minnis P,Yan H,et al.Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements[J].Atmospheric Chemistry and Physics,2010,10(14):6863-6872.
[6] Liu D,Wang Z,Liu Z,et al.A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements[J].Journal of Geophysical Research:Atmospheres,2008,113(D16).
[7] Uno I,Eguchi K,Yumimoto K,et al.Asian dust transported one full circuit around the globe[J].Nature Geoscience,2009,2(8):557-560.
[8] Li C,Krotkov N A,Dickerson R R,et al.Transport and evolution of a pollution plume from northern China:a satellite-based case study[J].Journal of Geophysical Research:Atmospheres,2010,115(D7).
[9] Huang J,Wang T,Wang W,et al.Climate effects of dust aerosols over East Asian arid and semiarid regions[J].Journal of Geophysical Research:Atmospheres,2014,119(19).
[10] Intergovernmental Panel on Climate Change.Climate Change 2007:The Physical Science Basis[M].New York,USA:Cambridge University Press,2007.
[11] Intergovernmental Panel on Climate Change.Climate Change 2013:The Physical Science Basis[M].New York,USA:Cambridge University Press,2013.
[12] Wang S,Wang J,Zhou Z,et al.Regional characteristics of dust events in China[J].Journal of Geographical Sciences,2003,13(1):35-44.
[13] Han Y,Fang X,Zhao T,et al.Long range trans-Pacific transport and deposition of Asian dust aerosols[J].Journal of Environmental Sciences,2008,20:424-428.
[14] Qi Y L,Ge J M,Huang J P.Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET[J].Chinese Science Bulletin,2013,58(20):2497-2506.
[15] 宿兴涛,李鲲,魏强,等.东亚沙尘光学特性及其对辐射强迫和温度的影响[J].中国沙漠,2016,36(5):1381-1390.
[16] Huang Z,Huang J,Bi J,et al.Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-US joint dust field experiment[J].Journal of Geophysical Research:Atmospheres,2010,115(D7).
[17] 宋嘉尧,张京朋,曲宗希,等.微脉冲激光雷达反演半干旱区气溶胶消光系数方法[J].中国沙漠,2015,35(4):971-976.
[18] Huang J,Fu Q,Su J,et al.Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J].Atmospheric Chemistry and Physics,2009,9(12):4011-4021.
[19] Yu H,Zhang Y,Chin M,et al.An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements[J].Remote Sensing of Environment,2012,121:125-131.
[20] Yu H,Chin M,Bian H,et al.Quantification of trans-Atlantic dust transport from seven-year (2007-2013) record of CALIPSO lidar measurements[J].Remote Sensing of Environment,2015,159:232-249.
[21] Diner D J,Martonchik J V,Kahn R A,et al.Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J].Remote Sensing of Environment,2005,94(2):155-171.
[22] 柳晶.中国地区气溶胶光学特性及辐射强迫的卫星遥感观测研究[D].南京:南京信息工程大学,2008.
[23] Omar A H,Winker D M,Tackett J L,et al.CALIOP and AERONET aerosol optical depth comparisons:One size fits none[J].Journal of Geophysical Research:Atmospheres,2013,118(10).
[24] Hayasaka T,Satake S,Shimizu A,et al.Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds East Asia Regional Experiment 2005[J].Journal of Geophysical Research:Atmospheres,2007,112(D22).
[25] Omar A H,Winker D M,Vaughan M A,et al.The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J].Journal of Atmospheric and Oceanic Technology,2009,26(10):1994-2014.
[26] Takamura T,Sasano Y,Hayasaka T.Tropospheric aerosol optical properties derived from lidar,sun photometer,and optical particle counter measurements[J].Applied Optics,1994,33(30):7132-7140.
[27] Anderson T L,Masonis S J,Covert D S,et al.In situ measurement of the aerosol extinction-to-backscatter ratio at a polluted continental site[J].Journal of Geophysical Research,2000,105(22):26907-26915.
[28] Liu Z,Sugimoto N,Murayama T.Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar[J].Applied Optics,2002,41(15):2760-2767.
[29] Anderson T L,Masonis S J,Covert D S,et al.Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia[J].Journal of Geophysical Research:Atmospheres,2003,108(D23).
[30] Chen W N,Tsai F J,Chou C C K,et al.Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei,Taiwan[J].Atmospheric Environment,2007,41(36):7698-7714.
[31] Omar A,Liu Z,Vaughan M,et al.Extinction-to-backscatter ratios of Saharan dust layers derived from in situ measurements and CALIPSO overflights during NAMMA[J].Journal of Geophysical Research:Atmospheres,2010,115(D24).
[32] Tsunematsu N,Kai K,Matsumoto T.The influence of synoptic-scale air flow and local circulation on the dust layer height in the north of the Taklimakan Desert[J].Water,Air & Soil Pollution:Focus,2005,5(3/4/5/6):175-193.
[33] Liu Z,Fairlie T D,Uno I,et al.Transpacific transport and evolution of the optical properties of Asian dust[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2013,116:24-33.
[34] Huang J,Minnis P,Chen B,et al.Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J].Journal of Geophysical Research:Atmospheres,2008,113(D23).
[35] Liu Z,Kuehn R,Vaughan M,et al.The CALIPSO cloud and aerosol discrimination:Version 3 algorithm and test results[C]//25th International Laser Radar Conference.St.Petersburg,Russia:International Association of Meteorology and Atmospheric Physics,2010.
[36] Winker D M,Pelon J,McCormick M P.Initial Results from CALIPSO[R].2006.
[37] Winker D M,Tackett J L,Getzewich B J,et al.The global 3-D distribution of tropospheric aerosols as characterized by CALIOP[J].Atmospheric Chemistry and Physics,2013,13(6):3345-3361.
[38] Sun J,Zhang M,Liu T.Spatial and temporal characteristics of dust storms in China and its surrounding regions,1960-1999:relations to source area and climate[J].Journal of Geophysical Research:Atmospheres,2001,106(D10).
文章导航

/