利用塔克拉玛干沙漠大气环境观测试验站西站10 m梯度探测系统气象和辐射观测数据,分析了塔中积雪下垫面地表反照率、土壤温度、土壤湿度的变化特征及其相互关系。结果表明:塔中积雪覆盖期间地表反照率0.18~0.97,日均值为0.60;有积雪覆盖的地表反照率日变化更偏向反"J"型,呈现出上午大于傍晚的形态,平均早晚较差为0.13;积雪使0~40 cm深度土壤温度下降,积雪消融后土壤湿度增大使各层土壤温度趋于接近,并使0、10、20 cm深度的土壤温度日变幅呈减小趋势,减小幅度分别为41%、39%、39%;积雪地表反照率与地表温度表现出负相关关系,反照率越高地表温度越低,二者相关系数为-0.71;积雪地表反照率与5 cm深度土壤湿度负相关,高地表反照率对应低土壤湿度,低地表反照率对应高土壤湿度,二者相关系数为-0.74。
Based on the 10-m gradient detection system at Taklimakan Atmosphere and Environment Observation Experiment Station in the hinterland of the Taklimakan Desert, the characteristics of surface albedo and multilayer soil temperature and moist and their relationship under snow cover are analyzed by using the meteorological and radiation data. The results showed that the surface albedo changes between 0.18 and 0.97 under snow cover, and the average value is 0.60. The daily variation of surface albedo tends to reverse "J" and the value in the morning is bigger than in the evening, and the average difference is 0.13. Snow makes the 0-40 cm depth soil temperature decrease, and soil temperatures at different layers are close to each other when soil moisture increases after the snow. Except the soil layer of 40 cm depth, the existence of snow makes the daily variation range of 0 cm, 10 cm, 20 cm soil temperature decrease by 41%, 39%, 39%, respectively. There is a negative correlation relationship between surface albedo and surface temperature under snow cover. Namely, high surface albedo corresponds to low surface temperature, and the correlation coefficient is -0.71. Under snow cover, surface albedo and 5 cm depth soil moisture present a negative correlation, and the high surface albedo corresponds to low soil moisture, and low surface albedo corresponds to high soil moisture, and the correlation coefficient is -0.74.
[1] 季国良.1982年8月-1983年7月青藏高原地区的辐射和气候[J].高原气象,1995,14(增刊):10-20.
[2] 沈志宝.青藏高原冬季降雪对地面净辐射的影响[J].高原气象,1996,15(4):397-403.
[3] 李国平,肖杰.青藏高原西部地区地面反射率的日变化以及与若干气象因子的关系[J].地理科学,2007,27(1):63-67.
[4] Zhang T J.Influence of the seasonal snow cover on the ground thermal regime:an overview[J].Reviews of Geophysics,2005,43:RG4022/2005.
[5] 金会军,孙立平,王绍令,等.青藏高原中、东部局地因素对地温的双重影响(Ⅰ)植被和雪盖[J].冰川冻土,2008,30(4):535-545.
[6] 孙琳婵,赵林,李韧,等.西大滩地区积雪对地表反照率及浅层地温的影响[J].山地学报,2010,28(3):266-273.
[7] 何清.塔克拉玛干沙漠中大气边界层结构及地-气相互作用观测研究[D].南京:南京信息工程大学,2009:1-203.
[8] 金莉莉,何清,李振杰.塔克拉玛干沙漠腹地辐射平衡和反照率变化特征[J].中国沙漠,2014,34(1):215-224.
[9] 金莉莉,李振杰,买买提艾力·买买提依明,等.塔克拉玛干沙漠北缘地表反照率特征及参数化研究[J].资源科学,2014,36(5):1051-1061.
[10] 王延慧.塔克拉玛干沙漠北苑地表能量收支研究[D].乌鲁木齐:新疆师范大学,2013:1-59.
[11] 王娟.塔克拉玛干沙漠塔中地气水热特征分析[D].乌鲁木齐:新疆师范大学,2011:1-101.
[12] 顾军明.塔克拉玛干沙漠北缘哈德地区近地层气象要素特征研究[D].乌鲁木齐:新疆师范大学,2014:1-74.
[13] 樊自立,季方,赵贵海等.塔克拉玛干地区土壤和土地资源[M].北京:科学出版社,1994:1-12.
[14] 李江风,何清,胡烈群等.塔克拉玛干沙漠和周边山区天气气候[M].北京:科学出版社,2003:281-584.
[15] 霍文,何清,杨兴华,等.中国北方主要沙漠沙尘粒度特征比较研究[J].水土保持研究,2011,18(6):6-11.
[16] 沈志宝,左洪超.青藏高原地面反射率变化的研究[J].高原气象,1993,12(3):294-301.
[17] 季国良,邹基玲.干旱地区绿洲和沙漠辐射收支的季节变化[J].高原气象,1994,13(3):323-329.
[18] 杨帆,王顺胜,何清,等.塔克拉玛干沙漠腹地地表辐射与能量平衡[J].中国沙漠,2016,36(5):1408-1418.
[19] 王慧,胡泽勇,李栋梁,等.黑河地区鼎新戈壁与绿洲和沙漠下垫面地表辐射平衡气候学特征的对比分析[J].冰川冻土,2009,31(3):465-473.
[20] 李德帅,王金艳,王式功,等.陇中黄土高原半干旱草地地表反照率的变化特征[J].高原气象,2014,33(1):89-96.
[21] 张强,孙昭董,王胜.黄土高原定西地区陆面物理量变化规律研究[J].地球物理学报,2011,54(7):89-96.
[22] 刘辉志,涂钢,董文杰.半干旱区不同下垫面地表反照率变化特征[J].科学通报,2008,53(10):1220-1227.
[23] 陆晓波,徐海明,孙丞虎,等.中国近50a地温的变化特征[J].南京气象学院学报,29(5):706-713.
[24] 高荣,韦志刚,董文杰.青藏高原冬春积雪和季节冻土年际变化差异的成因分析[J].冰川冻土,2004,26(2):154-158.
[25] 马虹,胡汝骥.积雪对冻土热状况的影响[J].干旱区地理,1995,18(4):23-27.
[26] 张述文,邱崇践,张卫东.估算地表热通量和近地层土壤含水量的变分方法[J].气象学报,2007,65(3):440-449.
[27] 刘宏谊,杨兴国,张强,等.敦煌戈壁冬夏季地表辐射与能量平衡特征对比研究[J].中国沙漠,2009,29(3):558-565.
[28] 刘树华,黄子琛,刘立超.土壤-大气界面热通量和水汽通量的数值模拟[M]//中国科学院沙坡头沙漠试验研究站.沙漠生态系统研究.兰州:甘肃科学技术出版社,1995:32-39.