兰新高铁是世界上穿越最长风区、防风工程规模最大的铁路。大风严重威胁高铁的运营安全,查明兰新高铁沿线大风分布特征及危害特性极为重要和迫切。利用气候分析、天气诊断及实测校验等方法,结合兰新高铁沿线大风观测资料,找出了微地貌、特定气候导致的局部特大风速区段,确定了沿线大风风速、风向在平面、剖面方向的时空变化规律。基于地形、风力、大风频率及危害程度,将兰新高铁线路划分为五大风区的防风工程设计分区,即:大风极少区、大风低发区、大风一般区、大风易发区和大风频繁区。大风区线路应以降高度、小夹角、大半径为主要选线原则。防风工程的设计,应以大风工程分区为基础,评估不同工程风区环境下的列车安全特性,建立以大风工程分区匹配为主导,适合不同风区,结合设置条件的系统工程对策。
Lanzhou-Urumqi high-speed railway crosses the longest strong wind area and is also the largest scale of windproof engineering railway in the world. Strong wind threatens the safety of high-speed operations. It is very important and urgent to clarify the distributions, characteristics and hazard features of strong wind along Lanzhou-Urumqi high-speed railway. This paper analyzed the strong wind monitoring data along the railway by climate analysis, weather diagnosis and actual measured check, etc. It was found that the local extra-strong wind zones influenced by microtopography and specific climate conditions. The spatial-temporal variations of wind speed and wind direction in both areal and vertical along the railway were also pointed out. Moreover, this research divided five strong wind areas into different design subareas of windproof engineering by the approach of Windproof Engineering Subarea, which is based on terrain, wind power, frequency of strong wind and hazardous amplitude. In addition, the design subareas are very-low-frequency strong wind area, low-frequency strong wind area, general-frequency strong wind area, high-frequency strong wind area and very high-frequency strong wind area. The principle of route selection in strong wind area should comply with a principle of decreasing height, shortening angle and enlarging radius. On the basis of engineering subareas it evaluates safety characteristics of trains in different engineering subareas when designing of windproof engineering, it establishes systematically engineering countermeasures which is led by matching the design subarea of windproof engineering, it also combined with engineering conditions and fit for different engineering subareas.
[1] 郭春,王明年.兰新第二双线铁路防风明洞实验段风荷载数值模拟研究[J].防灾减灾工程学报,2014(1):7-12.
[2] 李鲲.大风区高速铁路新型防风设施研究[J].中南大学学报(自然科学版),2012(2):756-762.
[3] 王争鸣.兰新高铁穿越大风区线路选线及防风措施设计[J].铁道工程学报,2015(1):1-6.
[4] 马国忠,张广兴,马玉芬.颠覆列车强风数值模式参数敏感性对比分析[J].中国沙漠,2010,30(6):1458-1463.
[5] 唐士晟,史永革,张小勇.新疆铁路百里风区大风特征统计分析[J].铁道技术监督,2011(1):36-40.
[6] 郑晓静,马高生,黄宁.铁路挡风墙挡风效果和积沙情况分析[J].中国沙漠,2011,31(1):21-27.
[7] Zhang K C,Qu J J,Han Q J,et al.Wind energy environments and aeolian sand characteristics along the Qinghai-Tibet Railway,China[J].Sedimentary Geology,2012,273/274:91-96.
[8] 张克存,安志山,庞营军,等.青藏铁路北麓河路段风沙防护体系阻沙效益[J].中国沙漠,2016,36(5):1216-1222.
[9] Xie S B,Qu J J,Lai Y M,et al.Formation mechanism and suitable controlling pattern of sand hazards at Honglianghe River section of Qinghai-Tibet Railway[J].Natural Hazards,2015,76(2):855-871.
[10] 张太红.兰新铁路第二双线穿越大风区综合选线研究[J].铁道标准设计,2015,59(7):28-31.
[11] 谢胜波,屈建军,庞营军,等.青藏铁路红梁河段沙害成因及防治模式[J].铁道学报,2014,36(11):99-105.
[12] 郗艳红,毛军,高亮,等.横风作用下高速列车安全运行速度限值的研究[J].铁道学报,2012,34(6):8-14.
[13] 谢胜波,屈建军,刘冰,等.青藏铁路沙害及其防治研究进展[J].中国沙漠,2014,34(1):42-48.
[14] 刘庆宽,杜彦良,乔富贵.日本列车横风和强风对策研究[J].铁道学报,2008,30(1):82-88.
[15] 谢胜波,屈建军.青藏铁路主要沙害路段治理技术及成效[J].干旱区资源与环境,2014,28(7):105-110.
[16] 周丹,田红旗,杨明智,等.强风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较[J].铁道学报,2007,29(5):32-36.
[17] 谢胜波,屈建军.青藏铁路沿线地形、气候、水文特征及其对沙害的影响[J].干旱区资源与环境,2014,28(10):157-163.
[18] 李银芳,周兴佳,潘伯荣,等.兰新铁路哈密地区的沙害[J].中国沙漠,1986,6(4):56-62.
[19] 谢胜波,屈建军,赖远明,等.拉日铁路沙害成因、分布、特征及防治研究[J].干旱区资源与环境,2016,30(2):170-175.
[20] 高广军,田红旗,姚松,等.兰新线强横风对车辆倾覆稳定性的影响[J].铁道学报,2004(4):36-42.
[21] 李凯崇,蒋富强,薛春晓,等.兰新铁路十三间房段的戈壁风沙流特征分析[J].铁道工程学报,2010(3):15-18.
[22] 中国铁路总公司.G/01-2014铁路技术管理规程[S].北京:中国铁道出版社,2014.