img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响

  • 岳喜元 ,
  • 左小安 ,
  • 庾强 ,
  • 徐翀 ,
  • 吕朋 ,
  • 张晶
展开
  • 1. 中国科学院西北生态环境资源研究院 乌拉特荒漠草原研究站, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049;
    3. 中国农业科学院 农业资源与农业区划研究所, 北京 100081;
    4. 兰州大学 草地农业科技学院, 甘肃 兰州 730000
岳喜元(1987-),男,安徽蚌埠人,博士研究生,从事干旱区生态学研究。E-mail:yuexiyuan393@126.com

收稿日期: 2017-04-21

  修回日期: 2018-04-09

  网络出版日期: 2018-11-03

基金资助

国家自然科学基金项目(41622103,41320104002);国家重点研发计划项目(2016YFC0500506)

Effects of Precipitation and Short Term Extreme Drought on Leaf Traits in Inner Mongolia Typical Steppe

  • Yue Xiyuan ,
  • Zuo Xiaoan ,
  • Yu Qiang ,
  • Xu Chang ,
  • Lv Peng ,
  • Zhang Jing
Expand
  • 1. Urat Desert Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
    4. College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China

Received date: 2017-04-21

  Revised date: 2018-04-09

  Online published: 2018-11-03

摘要

植物叶性状在植物响应环境变化中具有重要作用。在气候变化的背景下,典型草原植物叶性状如何响应降水格局与短期极端干旱还不十分清楚。利用野外控制试验,研究了降水量(323 mm和236 mm)和短期极端干旱(生长季减雨66%和生长季干旱60 d)对典型草原植物群落及优势植物羊草(Leymus chinensis)叶性状的影响。结果表明:降水格局显著影响着植物群落和羊草的叶性状(P<0.05),短期极端干旱对典型草原群落和羊草叶面积具有显著影响(P<0.05)。随着降水量的减少,群落和羊草的叶面积与叶干物质含量降低,而比叶面积与叶片氮含量增加。降水格局与短期极端干旱交互作用显著影响着群落的叶面积与叶片氮含量(P<0.05),323 mm降水量下短期极端干旱显著降低了叶面积,266 mm降水量下生长季干旱60 d增加了叶片氮含量。降水格局与短期极端干旱交互作用也显著影响着羊草叶面积与比叶面积(P<0.01),323 mm降水量下短期极端干旱降低了叶面积,266 mm降水量下生长季干旱60 d显著增加了比叶面积。回归分析表明,不同处理下羊草叶面积、叶干物质含量、叶片氮含量能较好地解释群落叶性状。典型草原植物群落通过优势植物的主要叶性状改变来适应降水格局变化,而通过叶面积改变来适应短期极端干旱。

本文引用格式

岳喜元 , 左小安 , 庾强 , 徐翀 , 吕朋 , 张晶 . 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响[J]. 中国沙漠, 2018 , 38(5) : 1009 -1016 . DOI: 10.7522/j.issn.1000-694X.2018.00031

Abstract

Leaf functional traits play an important role in the response of plants to environmental change. How leaf traits respond to precipitation pattern and short term extreme drought is still not very clear in Inner Mongolia typical steppe under climate change. By using manipulative experiment in the field, the leaf traits of dominant species Leymus chinensis and community leaf traits were studied under precipitation pattern (323 m and 266 mm) and short term extreme drought (precipitation reduced by 66% from May to September; drought for 60 days from June to July) in Inner Mongolia typical steppe. The results showed that precipitation had significant effects on leaf traits L. chinensis and community leaf traits (P<0.05), and short term extreme drought significantly affected leaf area of L. chinensis and community weighted means of leaf area. Specifically, leaf area and leaf dry matter content of L.chinensis and community weighted means of leaf area and leaf dry matter content decreased from high precipitation site to low precipitation site, while leaf nitrogen content increased. The interaction of precipitation pattern and short term extreme drought significantly affected community weighted means of leaf area and leaf nitrogen content (P<0.05). Short term extreme drought significant decreased community weighted means of leaf area in 323 mm, and drought for 60 days significantly increased community weighted means of leaf nitrogen content in 266 mm. Precipitation pattern and short term extreme drought interactively affected leaf area and specific leaf area of L.chinensis (P<0.01). Short term extreme drought significantly decreased leaf area of L.chinensis in 323 mm, and drought for 60 days increased specific leaf area in 266 mm. Leaf area, leaf dry matter content and leaf nitrogen content of L.chinensis can well explain community leaf traits under control and short term extreme drought treatments. Dominant species can alter the key leaf traits to acclimate to precipitation pattern, while they change leaf area to adapt to short term extreme drought in typical steppe.

参考文献

[1] Chaves M M,Pereira J S,Maroco J,et al.How plants cope with water stress in the field? photosynthesis and growth[J].Annals of Botany,2002,89(7):907-916.
[2] Wu J,Zhou L,Mo X,et al.Drought monitoring and analysis in China based on the integrated surface drought index (ISDI)[J].International Journal of Applied Earth Observation and Geoinformation,2015,41:23-33.
[3] 马柱国,符淙斌.1951-2004年中国北方干旱化的基本事实[J].科学通报,2006,51(20):2429-2439.
[4] Huang J,Xue Y,Sun S,et al.Spatial and temporal variability of drought during 1960-2012 in Inner Mongolia,north China[J].Quaternary International,2015,355:134-144.
[5] 胡中民,樊江文,钟华平,等.中国温带草地地上生产力沿降水梯度的时空变异性[J].中国科学D辑:地球科学,2006,36(12):1154-1162.
[6] 梁艳,干珠扎布,张伟娜,等.气候变化对中国草原生态系统影响研究综述[J].中国农业科技导报,2014,16(2):1-8.
[7] 孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报,2007,31(1):150-165.
[8] Diaz S,Cabido,M. Vive la difference:plant functional diversity matters to ecosystem processes[J].Trends in Ecology & Evolution,2001,16:646-655.
[9] Ackerly D,Knight C,Weiss S,et al.Leaf size,specific leaf area and microhabitat distribution of chaparral woody plants:contrasting patterns in species level and community level analyses[J].Oecologia,2002,130(3):449-457.
[10] 刘旻霞,马建祖.甘南高寒草甸植物功能性状和土壤因子对坡向的响应[J].应用生态学报,2012,23(12):3295-3300.
[11] 安慧.放牧干扰对荒漠草原植物叶性状及其相互关系的影响[J].应用生态学报,2012,23(11):2991-2996.
[12] Li X,Hou X,Ren W,et al.Long-term effects of mowing on plasticity and allometry of Leymus chinensis in a temperate semi-arid grassland,China[J].Journal of Arid Land,2016,8(6):899-909.
[13] 冯秋红,史作民,董莉莉,等.南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J].植物生态学报,2010,34(6):619-627.
[14] 闫建成,梁存柱,付晓玥,等.草原与荒漠一年生植物性状对降水变化的响应[J].草业学报,2013,22(1):68-76.
[15] 吕晓敏,周广胜,王玉辉,等.短花针茅(Stipa breviflora)功能性状对水热协同作用的敏感性和适应性[J].科学通报,2014,59(34):3378-3387.
[16] 李宗杰,田青,宋玲玲.甘肃省摩天岭北坡木本植物叶性状变异及关联[J].中国沙漠,2018,38(1):149-156.
[17] 薛立,曹鹤.逆境下植物叶性状变化的研究进展[J].生态环境学报,2010,19(8):2004-2009.
[18] 尧婷婷,孟婷婷,倪健,等.新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探[J].生物多样性,2010,18(2):188-198.
[19] 白永飞,李凌浩,黄建辉,等.内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响[J].植物学报,2001,43(3):280-287.
[20] 刘公社,李晓霞,齐冬梅,等.羊草种质资源的评价与利用[J].科学通报,2016,61(2):271-281.
[21] Wang R,Gao Q.Morphological responses of Leymus chinensis (Poaceae) to the large-scale climatic gradient along the North-east China Transect (NECT)[J].Diversity and Distributions,2004,10(1):65-73.
[22] 赵学勇,刘良旭,王玮,等.降水波动对荒漠草原生产力的影响[J].中国沙漠,2014,34(6):1486-1495.
[23] 李秋月.气候变化及放牧对内蒙古草地的影响与适应对策[D].北京:中国农业大学,2015.
[24] Heisler-White J L,Knapp A K,Kelly E F.Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland[J].Oecologia,2008,158(1):129-140.
[25] Debouk H,de Bello F,Sebastià M-T.Functional trait changes,productivity shifts and vegetation stability in mountain grasslands during a short-term warming[J].Plos One,2015,10(10):e0141899.
[26] Ali A,Yan E R,Chang S X,et al.Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests[J].Science of the Total Environment,2017,574:654-662.
[27] 周欣,左小安,赵学勇,等.科尔沁沙地中南部34种植物叶功能性状及其相互关系[J].中国沙漠,2015,35(6):1489-1495.
[28] 黄华,梁宗锁,韩蕊莲.持续干旱胁迫对女贞形态与生长的影响[J].林业科学,2008,44(8):145-148.
[29] Wright I J,Reich P B,Westoby M,et al.The worldwide leaf economics spectrum[J].Nature,2004,428(6985):821-827.
[30] 冯秋红,史作民,董莉莉,等.南北样带温带区栎属树种功能性状对气象因子的响应[J].生态学报,2010,30(21):5781-5789.
[31] Garnier E,Navas M L.A trait-based approach to comparative functional plant ecology:concepts,methods and applications for agroecology.a review[J].Agronomy for Sustainable Development,2012,32(2):365-399.
[32] 李永华,卢琦,吴波,等.干旱区叶片形态特征与植物响应和适应的关系[J].植物生态学报,2012,36(1):88-98.
[33] Cornelissen J,Lavorel S,Garnier E,et al.A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J].Australian Journal of Botany,2003,51(4):335-380.
[34] 施宇.延河流域植物功能性状对环境变化的响应和植物适应策略研究[D].陕西杨凌:西北农林科技大学,2012.
[35] Marron N,Dreyer E,Boudouresque E,et al.Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus canadensis (Moench) clones,‘Dorskamp’ and ‘Luisa_Avanzo’[J].Tree Physiology,2003,23(18):1225-1235.
[36] Randriamanana T,Wang F,Lehto T,et al.Water use strategies of seedlings of three Malagasy Adansonia species under drought[J].South African Journal of Botany,2012,81:61-70.
[37] 刘美珍,张海敏,杨珊,等.浑善达克沙地C3和C4植物对干旱胁迫响应策略[J].科技导报,2011,29(5):48-53.
[38] 李永华,罗天祥,卢琦,等.青海省沙珠玉治沙站17种主要植物叶性因子的比较[J].生态学报,2005,25(5):994-999.
[39] 马飞,姬明飞,陈立同,等.油松幼苗对干旱胁迫的生理生态响应[J].西北植物学报,2009,29(3):548-554.
[40] 董廷发,冯玉龙,类延宝,等.干旱和湿润生境中主要优势树种叶片功能性状的比较[J].生态学杂志,2012,31(5):1043-1049.
[41] 丁小慧,罗淑政,刘金巍,等.呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化[J].生态学报,2012,32(11):3467-3476.
[42] 田青,王国宏,曹致中.典型草原14种植物叶片性状对模拟降雨变化的响应[J].甘肃农业大学学报,2008,43(9):129-134.
[43] 张慧文,马剑英,孙伟,等.不同海拔天山云杉叶功能性状及其与土壤因子的关系[J].生态学报,2010,30(21):5747-5758.
[44] 毛伟,李玉霖,张铜会,等.不同尺度生态学中植物叶性状研究概述[J].中国沙漠,2012,32(1):33-41.
文章导航

/