img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

塔里木盆地沙生柽柳(Tamarix taklamakanensis)遗传多样性

  • 苏志豪 ,
  • 卓立 ,
  • 李文军 ,
  • 刘会良 ,
  • 康晓珊 ,
  • 姜小龙
展开
  • 1. 中国科学院新疆生态与地理研究所 干旱区生物地理与生物资源重点实验室, 新疆 乌鲁木齐 830011;
    2. 新疆师范大学 图书馆, 新疆 乌鲁木齐 830011;
    3. 中国科学院上海辰山植物科学研究中心/上海辰山植物园, 上海 201602
苏志豪(1981-),男,湖北随县人,副研究员,从事植物遗传保育研究工作。E-mail:suzh@ms.xjb.ac.cn

收稿日期: 2017-04-10

  修回日期: 2017-07-11

  网络出版日期: 2018-11-03

基金资助

国家自然科学基金项目(31770703,31400561,U1803101);中国科学院"西部青-学者"项目(2016-QNXZ-B-16)

Genetic Diversity of Tamarix taklamakanensis in the Tarim Basin

  • Su Zhihao ,
  • Zhuo Li ,
  • Li Wenjun ,
  • Liu Huiliang ,
  • Kang Xiaoshan ,
  • Jiang Xiaolong
Expand
  • 1. Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. Library of Xinjiang Normal University, Urumqi 830011, China;
    3. Shanghai Chenshan Plant Science Research Center/Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China

Received date: 2017-04-10

  Revised date: 2017-07-11

  Online published: 2018-11-03

摘要

沙生柽柳(Tamarix taklamakanensis)为中国特有种,是流动沙丘上最抗旱耐热的固沙造林树种,对荒漠化防治工作意义重大。筛选了7个短串联重复序列(SSR)标记,分析了塔里木盆地沙生柽柳居群的遗传多样性。结果表明:尽管沙生柽柳呈片段化分布,物种水平上仍保持一定程度的遗传多样性,但居群的平均等位基因多样性较低;大多数居群经历了近期的瓶颈效应;自然居群被划分为4个遗传群体,分布于塔里木盆地腹地的群体内部有较强的基因流,但是位于盆地边缘的群体发生了明显的遗传分化。居群大规模遭受瓶颈效应可能是等位基因多样性偏低的主要原因;繁殖体沿河道的补给可能使盆地腹地群体维持较高遗传多样性;地理隔离可能是盆地边缘群体分化的主要因素。

本文引用格式

苏志豪 , 卓立 , 李文军 , 刘会良 , 康晓珊 , 姜小龙 . 塔里木盆地沙生柽柳(Tamarix taklamakanensis)遗传多样性[J]. 中国沙漠, 2018 , 38(5) : 1041 -1048 . DOI: 10.7522/j.issn.1000-694X.2017.00067

Abstract

Tamarix taklamakanensis is a tree endemic to China, and is the most drought-resistant and heat-resistant species for sand fixation, thus is significant to desert prevention and cure. Seven microsatellite loci were selected to analyse the genetic diversity of populations of T. taklamakanensis in the Tarim Basin. The research results reveal that although the species is severely fragmented distributed, it still remains a moderate genetic diversity, however the allelic diversity was low; most populations were detected to have experienced recent bottlenecks; natural populations were subdivided into 4 groups, and gene flow was high in the group distributed in the center of Tarim Basin, whereas significant genetic divergence was detected in geographically outlying groups. Bottleneck effects in most of the populations might lead to the loss of allelic diversity; propagule supplemented along the river system might contribute to the high level of genetic diversity in groups in the center of the basin; geographical isolation might mainly cause the genetic divergence in geographically outlying groups.

参考文献

[1] 李锡文.中国植物志第50(2)卷[M].北京:科学出版社,1990.
[2] 刘媖心.中国沙漠植物志第二卷[M].北京:科学出版社,1987.
[3] 刘生龙,王理德,高志海,等.沙生怪柳扦插育苗试验研究[J].甘肃林业科技,1996(3):36-38.
[4] 杨尧军,袁宏波,刘淑娟,等.库姆塔格沙漠沙生怪柳种群与环境因子分析[J].干旱区研究,2013,30(5):827-831.
[5] 尹林克,谭丽霞,王兵.新疆珍稀濒危特有高等植物[M].乌鲁木齐:新疆科学技术出版社,2006.
[6] Frankham R,Ballou J D,Briscoe D A.Introduction to Conservation Genetics[M].Cambridge,UK:Cambridge University Press,2002.
[7] 黄宏文.保育遗传学与植物遗传资源的保育策略[J].武汉植物学研究,1998,16(4):346-358.
[8] 袁宏波,张锦春,褚建民,等.库姆塔格沙漠典型植物种群年龄结构特征[J].西北植物学报,2011,31(11):2304-2309.
[9] 何兴东,高玉葆,任安芝.风沙干扰在濒危植物沙生怪柳群落形成演变过程中的作用[J].植物学报,2003,45(11):1285-1290.
[10] 张道远,尹林克,潘伯荣.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠,2003,23(3):252-256.
[11] 何兴东,丛培芳,段争虎,等.荒漠植物蒸腾速率的变化与组织含水量的关系[J].干旱区资源与环境,2001,15(3):68-70.
[12] 尹林克.柽柳属植物的生态适应性与引种[J].干旱区研究,2002,19(3):12-16.
[13] 盛岩,郑蔚虹,裴克全,等.微卫星标记在种群生物学研究中的应用[J].植物生态学报,2002,26(增刊):119-126.
[14] 张彩英,李喜焕,常文锁,等.应用SSR标记分析大豆种质资源的遗传多样性[J].植物遗传资源学报,2008,9(3):308-314.
[15] 祖元刚,孙梅,康乐.分子生态学理论,方法和应用[M].北京:高等教育出版社,1999.
[16] 束爱萍,刘增兵,余丽琴,等.水稻SSR标记的遗传多样性研究进展[J].植物遗传资源学报,2013,14(5):778-783.
[17] 叶春秀,姜继元,董鹏,等.基于SSR标记的新疆塔里木河流域柽柳指纹图谱构建及遗传多样性分析[J].分子植物育种,2015,13(11):2566-2571.
[18] 张如华.柽柳群体遗传变异研究[D].南京:南京林业大学,2011.
[19] Terzoli S,Abbruzzese G,Beritognolo I,et al.Genetic characterization of a Tamarix spp.germplasm collection in Italy[J].Botany,2014,92(5):360-369.
[20] Terzoli S,Beritognolo I,Sabatti M,et al.Development of a novel set of EST-SSR markers and cross-species amplification in Tamarix Africana (Tamaricaceae)[J].American Journal of Botany,2010,97:45-47.
[21] Doyle J J,Doyle J L.A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J].Phytochemical Bulletin,1987,19:11-15.
[22] Terzoli S,Cattan E,Sabatti M,et al.Primer Note,A novel set of EST-SSR markers in Tamarix:a resource to characterize this genus[J].Silvae Genetica,2013,62:104-109.
[23] Peakall R,Smouse P E.GenAlEx 6.5:genetic analysis in Excel.Population genetic software for teaching and research-an update[J].Bioinformatics,2012,28:2537-2539.
[24] Goudet J.FSTAT (version 1.2):a computer program to calculate F-statistics[J].Journal of Heredity,1995,86:485-486.
[25] Raymond M,Rousset F.Genepop,version 1.2:population genetics software for exact tests and ecumenicism[J].Journal of Heredity,1995,86:248-249.
[26] Piry S,Luikart G,Cornuet J M.BOTTLENECK:a computer program for detecting recent reductions in the effective population size using allele frequency data[J].Journal of Heredity,1999,90:502-503.
[27] Cornuet J M,Luikart G.Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data[J].Genetics,1996,144:2001-2014.
[28] Luikart G,Allendorf F W,Cornuet J M,et al.Distortion of allele frequency distributions provides a test for recent population bottlenecks[J].Journal of Heredity,1998,89:238-247.
[29] Ciofi C,Beaumont M A,Swingland I R,et al.Genetic divergence and units for conservation in the Komodo dragon,Varanus komodoensis[J].Proceedings of the Royal Society of London B,1999,266:2269-2274.
[30] Excoffier L,Smouse P E,Quattro J M.Analysis of molecular variance inferred from metric distances among DNA haplotypes-application to human mitochondrial DNA restriction data[J].Genetics,1992,131:479-491.
[31] Tamura K,Stecher G,Peterson D,et al.MEGA 6:molecular evolutionary genetics analysis version 6.0[J].Molecular Biology and Evolution,2013,30:2725-2729.
[32] Peakall R,Smouse P E.GENALEX 6,genetic analysis in Excel:population genetic software for teaching and research[J].Molecular Ecology Notes,2006,6:288-295.
[33] Posada D,Crandall K A,Templeton A R.GeoDis:a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes[J].Molecular Ecology,2000,9:487-488.
[34] Bohonak A J.IBD (isolation by distance):a program for analyses of isolation by distance[J].Journal of Heredity,2002,93:153-154.
[35] Sun Y,Wen X Y,Huang H W.Genetic diversity and differentiation of Michelia maudiae (Magnoliaceae) revealed by nuclear and chloroplast microsatellite markers[J].Genetica,2011,139:1439-1447.
[36] Zhang R,Zhou Z C,Du K J.Genetic diversity of natural populations of endangered Ormosia hosiei endemic to China[J].Biochemical Systematics and Ecology,2012,40:13-18.
[37] Loveless M D,Hamrick J L.Ecological determinants of genetic structure in plant populations[J].Annual Review of Ecology and Systematics,1984,15:65-95.
[38] Hamrick J L,Godt M J W.Allozyme diversity in plant species[M]//Brown A H D,Clegg M T,Kahler A L,et al.Plant Population Genetics,Breeding and Germplasm Resources.Sunderland,USA:Sinauer,1989.
[39] Austerlitz F,Mariette S,Machon N,et al.Effects of colonization processes on genetic diversity:differences between annual plants and tree species[J].Genetics,2000,154:1309-1321.
[40] Chen M,Zhao X Y.Pollen limitation and breeding system of Tamarix ramosissima (Ledeb) in patched habitats[J].South African Journal of Botany,2015,99:36-43.
[41] Wang Z L,Liu L D,Fang Y M.Flowering characteristics and pollinationecology in Tamarix chinensis (Tamaricaceae) in the Yellow River delta[J].Journal of Tropical and Subtropical Botany,2005,13(4):353-357.
[42] Spencer C C,Neigel J E,Leberg P L.Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks[J].Molecular Ecology,2000,9:1517-1528.
[43] Nei M,Maruyama T,Chakraborty R.The bottleneck effect and genetic variability in populations[J].Evolution,1975,29:1-10.
[44] Gaudeul M,Taberlet P,Till-Bottraud I.Genetic diversity in an endangered alpine plant,Eryngium alpinum L.(Apiaceae),inferred from amplified fragment length polymorphism markers[J].Molecular Ecology,2000,9:1625-1637.
[45] 陈小勇.生境片段化对植物种群遗传结构的影响及植物遗传多样性保护[J].生态学报,2000,20(5):884-892.
[46] Kang M,Wang J,Huang H W.Demographic bottlenecks and low gene flow in remnant populations of the critically endangered Berchemiella wilsonii var.pubipetiolata (Rhamnaceae) inferred from microsatellite markers[J].Conservation Genetics,2008,9:191-199.
[47] Zhang X P,Li X H,Qiu Y X.Genetic diversity of the endangered species Kirengeshoma palmate (Saxifragaceae)[J].Biochemical Systematics and Ecology,2006,34:38-47.
[48] Yang Q E,Gaskin J.Tamaricaceae[M]//Wu Z Y,Raven P H.Flora of China.Beijing:Science Press,2007.
[49] Tomaso D,Tomaso J M.Impact,biology,and ecology of saltcedar (Tamarix spp.) in the southwestern United States[J].Weed Technology,1998,12:326-336.
[50] Nilsson C,Brown R L,Jansson R,et al.The role of hydrochory in structuring riparian and wetland vegetation[J].Biological Reviews,2010,85:837-858.
[51] Love H M,Maggs C A,Murray T E,et a.Genetic evidence for predominantly hydrochoric gene flowin the invasive riparian plant Impatiens glandulifera (Himalayan balsam)[J].Annals of Botany,2013,112:1743-1750.
文章导航

/