利用塔克拉玛干沙漠腹地塔中和巴丹吉林沙漠北缘拐子湖两个陆气通量监测站2013年2月-2014年1月地面辐射观测数据及相应气象资料,对比分析塔中和拐子湖两地的太阳辐射通量和地表反照率差异特征,同时也探究了两地太阳辐射通量和地表反照率与太阳高度角之间的关系。结果表明:(1)塔中和拐子湖两地各辐射通量均呈较为同步的季节变化特征;具有太阳辐射优势的塔中地区因沙尘天气的影响在部分月份地表总辐射小于拐子湖地区;拐子湖由于地表沙粒相对较粗且包含大量透明度较高的石英颗粒,地表反照率和反射辐射均大于塔中地区;两地各辐射通量月平均日变化均呈现出标准倒"U"型结构;(2)拐子湖较粗的地表沙粒导致沙尘天气过后不易形成浮尘,沙尘天气过后各辐射通量恢复至发生之前的状态较塔中地区迅速;(3)两地太阳高度角夏季最大,冬季最小,最大值均可达75°左右,最小值塔中和拐子湖地区分别为45°和40°;各辐射通量随着太阳高度角的升高而增加,地表反照率随之减小,但受多种因素影响各辐射通量最大值并未出现在太阳高度角最大的时候。
In this paper, using the land radiation observation data and corresponding meteorological data of two land-gas flux monitoring stations in Tazhong and Guaizihu Lake from February 2013 to January 2014, the author compared the characteristics of solar radiation flux and surface albedo in Tazhong and Guaizihu lake and explored the relationship between solar radiation flux, surface albedo and solar altitude angle. The results show that:(1)The surface radiation flux in Tazhong and the Guaizihu Lake showed variational characteristic that synchronize with season. The total surface radiation in Tazhong, which have the advantage of solar radiation, is less than that of the Guaizihu Lake in several months, due to the influence of sand-dust weather.The sand particle in Guaizihu Lake is relatively thicker and contains a large amount of quartz grains with high transparency, and the surface albedo in Guaizihu Lake is larger than in Tazhong. The diurnal variation of surface radiation flux presents inverted "U" curve in both places. (2)The sand particle in Guaizihu Lake is so thick that the dust is not easily suspended after sandstorms. As a result, the radiation flux recovers more quickly after sandstorms in Guaizihu Lake than in Tazhong. (3)The solar altitude angle in the two places is the largest in summer and the minimum in winter, the maximum value is 75°, and the minimum value is 45° and 40° in Tazhong and Guaizihu Lake, respectively. The radiation flux increases with the solar altitude angle, surface albedo also decreases, but affected by a variety of factors the maximum radiation flux does not appear at the largest solar altitude angle.
[1] Ye D Z,Gao Y X.Tibetan Plateau Meteorology[M].Beijing:Science Press,1979:89-101.
[2] 李建刚,奥银焕,吕世华,等.巴丹吉林沙漠与小尺度湖泊夏季地表特征对比分析[J].高原气象,2014,33(3):647-657.
[3] 陈星,余晔,陈晋北,等.黄土高原半干旱区雨养农田地表辐射和能量通量的季节变化[J].高原气象,2016,35(2):351-362.
[4] 赵军,李旺平,李飞,等.黄土高原太阳总辐射气候学计算及特征分析[J].干旱区研究,2008,25(1):53-58.
[5] 岳平,李耀辉,张良,等.青藏高原林芝与四川盆地温江地区晴天辐射和能量平衡特征[J].冰川冻土,2012,34(6):1328-1335.
[6] 武荣盛,马耀明.青藏高原不同地区辐射特征对比分析[J].高原气象,2010,29(2):251-259.
[7] 顾润源,武荣盛,吴菊秀,等.内蒙古半干旱草原下垫面地表辐射特征[J].干旱区地理,2013,36(5):854-864.
[8] 王慧,胡泽勇,李栋梁,等.黑河地区鼎新戈壁与绿洲和沙漠下垫面地表辐射平衡气候学特征的对比分析[J].冰川冻土,2009,31(3):464-473.
[9] Rehman S H.Solar radiation over Saudi Arabia and comparisons with empirical models[J].Energy,1998,23(12):1077-1082.
[10] Sabziparvar A A.A simple formula for estimating global solar radiation in central arid deserts of Iran[J].Renewable Energy,2008,33(5):1002-1010.
[11] 魏文寿,董光荣.古尔班通古特沙漠的辐射热量交换分析[J].中国沙漠,1997,17(4):335-341.
[12] 孔丹,何清,张瑞军,等.塔克拉玛干沙漠腹地春季一次沙尘暴沙尘气溶胶的辐射特征[J].干旱气象,2008,26(2):36-40.
[13] 李帅,胡列群,何清,等.塔克拉玛干沙漠一次强沙尘暴的辐射特性及气象要素分析[J].沙漠与绿洲气象,2011,5(4):26-30.
[14] 杨帆,王顺胜,何清,等.塔克拉玛干沙漠腹地地表辐射与能量平衡[J].中国沙漠,2016,36(5):1408-1418.
[15] 马宁,王乃昂,黄银洲,等.巴丹吉林沙漠腹地夏季不同天气条件下陆-湖面辐射收支与能量分配特征对比[J].自然资源学报,2015,30(5):796-809.
[16] 王欣,文军,刘蓉,等.降水过程对巴丹吉林沙漠近地面太阳辐射的影响[J].干旱气象,2011,29(4):427-432.
[17] 杨帆,买买提艾力·买买提依明,何清,等.巴丹吉林拐子湖地表辐射与能量平衡特征[J].中国沙漠,2015,35(6):1636-1643.
[18] 金莉莉,何清,买买提艾力·买买提依明,等.塔克拉玛干沙漠腹地辐射平衡和反照率变化特征[J].中国沙漠,2014,34(1):215-224.
[19] 李帅,胡列群,何清,等.塔克拉玛干沙漠腹地地表辐射收支特征研究[J].中国沙漠,2012,32(4):1035-1044.
[20] 霍文,何清,杨兴华,等.中国北方主要沙漠沙尘粒度特征比较研究[J].水土保持研究,2011,18(6):6-11.
[21] 杨帆,郑新倩,努尔阿米娜·依明,等.巴丹吉林沙漠北缘沙尘天气过程中近地面气象要素变化及风沙流结构分析[J].沙漠与绿洲气象,2015,9(4):67-74.
[22] 宁凯,李卓仑,王乃昂,等.巴丹吉林沙漠地表风积砂粒度空间分布及其环境意义[J].中国沙漠,2013,33(3):642-648.
[23] 次仁尼玛,单增罗布,宣越健,等.青藏高原羊八井地区地表辐射的季节变化特征[J].高原气象,2013,32(5):1253-1260.
[24] 刘辉志,涂钢,董文杰,等.半干旱区不同下垫面地表反照率变化特征[J].科学通报,2008,53(10):1220-1227.
[25] 季国良,马晓燕,邹基玲,等.黑河地区绿洲和沙漠地面辐射收支的若干特征[J].干旱气象,2003,21(3):29-33.