img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

不同生境下砂蓝刺头(Echinops gmelini)形态结构及生物量分配特征

  • 王艳莉 ,
  • 齐欣宇 ,
  • 杨昊天 ,
  • 宋光 ,
  • 都军
展开
  • 1. 中国科学院西北生态环境资源研究院 沙坡头沙漠研究试验站, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049;
    3. 兰州大学 资源环境学院, 甘肃 兰州 730000
王艳莉(1990-),女,安徽亳州人,博士研究生,主要从事干旱区植物种群生态学研究。E-mail:wangyanli126@hotmail.com

收稿日期: 2017-03-12

  修回日期: 2017-04-24

  网络出版日期: 2018-11-06

基金资助

国家自然科学基金项目(41530746)

Morphological Structure and Biomass Allocation of Echinops gmelini in Different Habitats

  • Wang Yanli ,
  • Qi Xinyu ,
  • Yang Haotian ,
  • Song Guang ,
  • Du Jun
Expand
  • 1. Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Couege of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2017-03-12

  Revised date: 2017-04-24

  Online published: 2018-11-06

摘要

砂蓝刺头(Echinops gmelini)是沙区常见一年生草本,具有繁殖比例高、密度高和生长速度快等特征,是研究区春季和早夏季节植物群落组成中最重要的草本植物。沙区人工植被演替过程中,群落中砂蓝刺头个体构件形态和生物量分配特征及其对土壤生境恢复的指示意义是本研究目的。分析了不同植被恢复阶段的沙地中(2010年铺设草方格、始植花棒、始植油蒿和1989年始植柠条与油蒿的固沙区,分别为生境1、2、3和4)砂蓝刺头构件形态及生物量分配特征。结果表明:(1)人工植被建立早期,初步稳定的沙面条件有利于砂蓝刺头的生长,而随着人工植被建立时间的增长呈现出种群衰退的趋势。4个生境间砂蓝刺头在株高、基径、根长、花序数及各器官生物量方面均差异显著(P<0.05),其大小关系是生境2 > 3 > 1 > 4。(2)不同生境地上-地下生物量间均为等速生长关系,且存在共同相关生长指数1.036,支持等速生长假说;地上-叶生物量间具有共同异速生长指数(0.874,异速生长关系);营养体-繁殖生物量间均表现出α>1异速生长关系,即繁殖生长资源的积累速率快于营养体生长。(3)株高、花序数与地上部分生物量间具有显著或极显著的正相关关系,表现出较好的协同变化趋势。总之,不同生境间砂蓝刺头形态结构及生物量特征具有明显差异,而构件生物量间相关生长关系的一致规律性及较稳定的繁殖生物量分配,有利于其适应异质生境并完成生长发育。

本文引用格式

王艳莉 , 齐欣宇 , 杨昊天 , 宋光 , 都军 . 不同生境下砂蓝刺头(Echinops gmelini)形态结构及生物量分配特征[J]. 中国沙漠, 2018 , 38(4) : 756 -764 . DOI: 10.7522/j.issn.1000-694X.2017.00043

Abstract

Annual species are a major component of sand ecosystem herbaceous vegetation. Echinops gmelini is widely distributed in desert regions, which contains characteristics of germination early, high density, fast growth and reproduction ratio higher. And it is the most important component of desert communities at late spring and early summer. This paper aims are with the evolution of the sand habitats restoration and vegetation that morphology and biomass allocation characteristics of E.gmelini will change and it has instruction significance for soil habitat restoration? This study analyzes E. gmelini morphology and biomass allocation characteristics in the different stages of vegetation restoration of desert. The results showed that:(1) The preliminary stability of sand surface conditions are conducive to the growth of E. gmelini and then present a trend of population decline after a long succession. (2) The relationships between aboveground biomass and belowground biomass were isometric in all habitats, which did support isometric scaling hypothesis.In addition, aboveground biomass and leaf biomass, aboveground biomass and leaf biomass were all allometric in four habitats. (3)Plant height, inflorescence number and the ground biomass had significant or extremely significant positive correlation that showed a good synergy change trend.

参考文献

[1] Bernardverdier M,Navas M,Vellend M,et al.Community assembly along a soil depth gradient:contrasting patterns of plant trait convergence and divergence in a mediterranean rangeland[J].Journal of Ecology,2012,100(6):1422-1433.
[2] 史元春,赵成章,宋清华,等.兰州北山刺槐枝叶性状的坡向差异性[J].植物生态学报,2015(4):362-370.
[3] Reyer C P,Leuzinger S,Rammig A,et al.A plant's perspective of extremes:terrestrial plant responses to changing climatic variability[J].Global Change Biology,2013,19(1):75-89.
[4] Shan L,Zhang X,Wang Y,et al.Influence of moisture on the growth and biomass allocation in Haloxylon ammodendron and Tamarix ramosissima seedlings in the shelterbelt along the tarim desert highway,xinjiang,China[J].Science Bulletin,2009,53(S2):93-101.
[5] Falster D S,Westoby M.Plant height and evolutionary games[J].Trends in Ecology and Evolution,2003,18(7):337-343.
[6] King D A.Allocation of above-ground growth is related to light in temperate deciduous saplings[J].Functional Ecology,2003,17(4):482-488.
[7] Muller I,Schmid B,Weiner J.The effect of nutrient availability on biomass allocation in 27 species of herbaceous plants[J].Perspectives in Plant Ecology Evolution and Systematics,2000,3(2):115-127.
[8] Cornelissen J H C,Lavorel S,Garnier E,et al.A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J].Australian Journal of Botany,2003,51(4):335-380.
[9] Dong M,De Kroon H.Plasticity in morphology and biomass allocation in Cynodon dactylon,a grass forming stolons and rhizomes[J].Oikos,1994,70(1):99-106.
[10] Fullen M A.Desertification and reclamation in north-central China[J].AMBIO:A Journal of the Human Environment,1994,23:131-135.
[11] Li S,Werger M J A,Zuidema P A,et al.Seedlings of the semi-shrub Artemisia ordosica are resistant to moderate wind denudation and sand burial in mu us sandland,China[J].Trees-structure and Function,2010,24(3):515-521.
[12] Li X R,Xiao H L,He M Z,et al.Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions[J].Ecological Engineering,2006,28(2):149-157.
[13] Coleman D.Ecology of desert systems[J].Agriculture,Ecosystems & Environment,2003,94(3):363-364.
[14] 李新荣,周海燕,王新平,等.中国干旱沙区的生态重建与恢复:沙坡头站60年重要研究进展综述[J].中国沙漠,2016,36(2):247-264.
[15] 李新荣,张志山,黄磊,等.我国沙区人工植被系统生态-水文过程和互馈机理研究[J].科学通报,2013(增刊1):397-410.
[16] Li X R,Kong D S,Tan H J,et al.Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the tengger desert,China[J].Plant and Soil,2007,300(1/2):221-231.
[17] 唐进年,彭金凤,徐先英,等.一年生荒漠植物的生态功能及在沙地植被恢复与重建中的作用[J].甘肃科技,2006(10):212-215.
[18] 王雪芹,蒋进,雷加强,等.古尔班通古特沙漠短命植物分布及其沙面稳定意义[J].地理学报,2003,58(4):598-605.
[19] 中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1996.
[20] 中国科学院甘肃省冰川冻土沙漠研究所沙漠研究室.中国沙漠地区药用植物[M].兰州:甘肃人民出版社,1972:166.
[21] 李新荣,张志山,刘玉冰,等.中国沙区生态重建与恢复的生态水文学基础[M].北京:科学出版社,2016:415-459.
[22] Li X R,Zhou H Y,Wang X P.The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the tengger desert,northern China[J].Plant and Soil,2003,251(2):237-245.
[23] Niklas K J,Enquist B J.Invariant scaling relationships for interspecific plant biomass production rates and body size[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(5):2922-2927.
[24] Warton D I,Wright I J,Falster D S,et al.Bivariate line-fitting methods for allometry[J].Biological reviews of the Cambridge Philosophical Society,2006,81(2):259-291.
[25] Li X R,Ma F Y,Xiao H L,et al.Long-term effects of revegetation on soil water content of sand dunes in arid region of northern China[J].Journal of Arid Environments,2004,57(1):1-16.
[26] Wang X,Li X,Xiao H,et al.Effects of surface characteristics on infiltration patterns in an arid shrub desert[J].Hydrological Processes,2007,21(1):72-79.
[27] Holloway G J.Phenotypic plasticity:beyond nature and nurture[J].Heredity,2002,89(6):410-410.
[28] 黄迎新,赵学勇,张洪轩,等.沙米表型可塑性对土壤养分、水分和种群密度变化的响应[J].应用生态学报,2008,12:2593-2598.
[29] 张志山,樊恒文,赵金龙,等.沙漠人工植物群落的根系分布及动态[J].中国沙漠,2006,26(4):637-643.
[30] 郝虎东,田青松,石凤翎,等.无芒雀麦地上生物量及各构件生物量分配动态[J].中国草地学报,2009,4:85-90.
[31] 李涛.荒漠植物异速生长指数及其空间格局适应降雨梯度变化的规律与机制研究[D].兰州:兰州大学,2010.
[32] Zhou X,Zhang Y,Niklas K J.Sensitivity of growth and biomass allocation patterns to increasing nitrogen:a comparison between ephemerals and annuals in the gurbantunggut desert,north-western China[J].Annal of Botany,2014,113(3):501-511.
[33] Aronson J N,Kigel J,Shmida A.Reproductive allocation strategies in desert and mediterranean populations of annual plants grown with and without water stress[J].Oecologia,1993,93(3):336-342.
[34] Niklas K J,Enquist B J.Invariant scaling relationships for interspecific plant biomass production rates and body size[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(5):2922-2927.
[35] 陆霞梅,周长芳,安树青,等.植物的表型可塑性、异速生长及其入侵能力[J].生态学杂志,2007(9):1438-1444.
[36] Enquist B J,Niklas K J.Global allocation rules for patterns of biomass partitioning in seed plants[J].Science,2002,295(5559):1517-1520.
[37] Niklas K J.Modelling below-and above-ground biomass for non-woody and woody plants[J].Annal of Botany,2005,95(2):315-321.
[38] 陶冶,张元明,全永威,等.准噶尔荒漠小山蒜的形态与生物量特征及其相互关系[J].中国沙漠,2012,32(5):1328-1334.
[39] 陶冶,张元明.准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J].草业学报,2014(2):38-48.
[40] 高景,王金牛,徐波,等.不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J].植物生态学报,2016(8):775-787.
文章导航

/