img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
古气候与环境演变

南昌市厚田沙地风沙沉积记录的末次冰期气候变化特征

  • 王志刚 ,
  • 李志文 ,
  • 黎武标 ,
  • 马泽源 ,
  • 王珍珍
展开
  • 1. 东华理工大学 核资源与环境国家重点实验室培育基地/地球科学学院, 江西 南昌 330013;
    2. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室 陕西 西安 710061
王志刚(1988-),男,浙江杭州人,硕士研究生,研究方向为地貌与第四纪环境演变。E-mail:wzg060435@126.com

收稿日期: 2017-11-08

  修回日期: 2018-01-24

  网络出版日期: 2018-12-05

基金资助

国家自然科学基金项目(41201006,41571007);黄土与第四纪地质国家重点实验室开放基金项目(SKLLQG1212);核资源与环境国家重点实验室培育基地(东华理工大学)开放基金项目(NRE1507)

Climatic Change Recorded by Aeolian Deposition in the Houtian Section of Nanchang during the Last Glacial Period

  • Wang Zhigang ,
  • Li Zhiwen ,
  • Li Wubiao ,
  • Ma Zeyuan ,
  • Wang Zhenzhen
Expand
  • 1. State Key Laboratory Breeding Base of Nuclear Resources and Environment/College of Earth Sciences, East China University of Technology, Nanchang 330013, China;
    2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

Received date: 2017-11-08

  Revised date: 2018-01-24

  Online published: 2018-12-05

摘要

位于南昌市南部的新建县广泛分布着由沙丘砂-古土壤叠覆堆积组成的沉积序列。在野外调查的基础上,选择位于新建县南部的厚田剖面进行工作,其沉积序列由3层沙丘砂和3层砂质古土壤组成,顶部与底部的光释光(OSL)年代分别为14.9 ka BP和77 ka BP,为末次冰期的产物。结果表明:(1)厚田剖面的末次冰期地层可划分为HTS4(77~57.1 ka BP)、 HTS3c(57.1~49.7 ka BP)、HTS3b(49.7~36.8 ka BP)、HTS3a(36.8~26.5 ka BP)、HTS2(26.5~14.9 ka BP)5个阶段。(2)以粒级-标准偏差法与主成分因子分析法提取敏感粒度,12.619~20 μm含量与平均粒径和黏粒含量正相关,400~563.667 μm含量与平均粒径和黏粒含量负相关,反映冬季风强度的敏感粒径为400~563.667 μm,反映夏季风强度的敏感粒径为12.619~20 μm。(3)平均粒径、黏粒含量、敏感粒度在剖面上呈现明显的峰谷交替变化,暖阶段基本同步于葫芦洞石笋记录的夏季风强盛期和65°N 7月的天文辐射总量的高峰,揭示出HTS3c、HTS3a、HTS2早期为温暖期,砂质古土壤发育;冷阶段对应于葫芦洞石笋记录的夏季风减弱期和65°N 7月的天文辐射总量的低值,揭示出HTS4、HTS3b、HTS2晚期为寒冷期,沙丘砂发育。厚田剖面末次冰期的气候变化存在万年尺度的气候波动,是太阳辐射总量和东亚季风共同影响下的结果。

本文引用格式

王志刚 , 李志文 , 黎武标 , 马泽源 , 王珍珍 . 南昌市厚田沙地风沙沉积记录的末次冰期气候变化特征[J]. 中国沙漠, 2018 , 38(6) : 1200 -1208 . DOI: 10.7522/j.issn.1000-694X.2017.00108

Abstract

The sedimentary sequences superimposed by dune sand and paleosol are widely distributed in the southern part of Xinjian County, Nanchang. Based on the field investigation, we found the Houtian section mainly consists of the alternating deposition of 3 layers of dune sands and paleosol, and its top and bottom ages are 14.9 ka BP and 77 ka BP, respectively, which is the product of the last glaciation. According to the contents of grain size and OSL chronology, we got the conclusion as follows:(1) The strata of the Last Glacial Period in the Houtian section can be divided into five stages, as HTS4(77-57.1 ka BP), HTS3c(57.1-49.7 ka BP), HTS3b(49.7-36.8 ka BP), HTS3a(36.8-26.5 ka BP), HTS2(26.5-14.9 ka BP).(2) The two results extracted by particle size-standard deviation method and principal component factor analysis show that 12.619-20 μm is positively correlated with mean particle size and clay content, and 400-563.667 μm is negatively correlated with mean particle size and clay content, which inspects that the sensitive particle size of winter monsoon is 400-563.667 μm and the sensitive particle size of summer monsoon is 12.619-20 μm.(3)The mean particle size, clay content and sensitive particle size show remarkable variations in alternation of peaks and valleys. The warm periods mainly correspond to strong summer monsoon indicated by stalagmite in Hulu Cave in China, as well as the peak of total amount of astronomical insolation at 65°N in July, which reveals that the sand-paleosol is developed in the warm period of HTS3c, HTS3a and early HTS2. The cold periods mainly correspond to weak summer monsoon indicated by stalagmite in Hulu Cave in China, as well as the valley of total amount of astronomical insolation at 65°N in July, which reveals that the dunes sand is developed in the cold period of HTS4, HTS3b and late HTS2. The climate change in the Houtian section during the Last Glacial Period has a climate fluctuation of ten thousand years, which probably results from the mutual impact of total amount of insolation and East Asian Monsoon.

参考文献

[1] 林承坤.第四纪古长江与沙山地形[J].南京大学学报:自然科学版,1959(2):93-105.
[2] 景存义,邱淑彰.湖口、彭泽沿江地区第四纪地层与沙山[J].南京师院学报:自然科学版,1980(2):37-43.
[3] 朱海虹,苏守德,王云飞,等.鄱阳湖的成因、演变及其三角洲沉积[J].中国科学院南京地理与湖泊研究所集刊,1983(1):29-39.
[4] 杨达源.江南的晚更新世风成沙丘[J].中国沙漠,1985,5(4):36-43.
[5] 王云飞,朱海虹,郑长苏,等.鄱阳湖盆地第四纪沉积及湖泊形成[C]//中国地理学会冰川冻土分会.中国第四纪冰川冰缘学术讨论会文集.北京:科学出版社,1985:161-166.
[6] 左长青.鄱阳湖沙山成因及治理利用浅析[J].中国水土保持,1986(4):2-5.
[7] 李季成.论鄱阳湖平原沙漠化的地学效应与防治[J].水文地质工程地质,1990(6):44-46.
[8] 张兰庭.鄱阳湖区"沙山"时代及其成因问题初步研究[C]//中国地质学会第四纪冰川与第四纪地质专业委员会.第四纪冰川与第四纪地质论文集(8).北京:地质出版社,1995:89-98.
[9] 吴艳宏,羊向东,王苏民,等.九江-澎泽一带沙山研究存在问题探讨[J].海洋地质与第四纪地质,2000,20(2):103-106.
[10] 储茂东,周劲松.鄱阳湖滨沙山地区景观结构及土地荒漠化机制初探[J].干旱区地理,1998,21(2):75-81.
[11] 杨超,黄长生,李长安,等.长江中游沙山形成的年代及成因研究[J].地质力学,2003,9(2):176-182.
[12] 邹学勇.中国亚热带湿润地区风沙地貌的研究[J].中国沙漠,1990,10(2):43-53.
[13] 韩志勇,李徐生,张兆干,等.鄱阳湖湖滨沙山垄状地形的成因[J].地理学报,2010,65(3):331-338.
[14] 任黎秀,和艳,杨达源.鄱阳湖湖滨十万年来沙山的演化[J].地理研究,2008,27(1):128-134.
[15] 胡亚萍,贾玉连,张智,等.粒度揭示的末次间冰期以来长江中游风沙-风尘体系[J].中国沙漠,2013,33(5):1324-1332.
[16] 彭学敏,贾玉连,胡亚萍,等.赣北芙蓉-周溪断面下蜀黄土粒度特征及其指示意义[J].热带地理,2014,34(5):663-671.
[17] 徐传奇,贾玉连,刘倩,等.赣北鄱阳湖地区第四纪黄土的粒度特征及环境意义[J].干旱区资源与环境,2016,30(9):104-108.
[18] Stuiver M,Grootes P M.GISP2 oxygen istope ratios[J].Quaternary Research,2000,53(3):277-284.
[19] 龚庆杰,吴时国,罗又郎.U k37与海水表层温度[J].地球科学进展,1997,12(3):284-289.
[20] 汪品先,赵泉鸿,翦知湣,等.南海三千万年的深海记录[J].科学通报,2003,48(21):2206-2215.
[21] Pausata F S R,Battisti D S,Nisancloglu K H,et al.Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J].Nature Geoscience,2011,4:474-480.
[22] 苏志华,杨小强,王建华,等.基于中国南方石笋记录的古气候周期探讨[J].中山大学学报:自然科学版,2012,51(3):114-120.
[23] Sylvain Gallet,Bor-ming Jahn,Masayuki Torii,Geochemical characterization of the Luochuan loess-paleosol sequence China and paleoclimatic implications[J].Chemical Geology,1996,133(1/2/3/4):67-88.
[24] 孙继敏,刘东生.洛川黄土地层的再划分及其L9、L15古环境意义的新解释[J].第四纪研究,2002,22(5):406-411.
[25] 邹学勇.南昌地区风沙化土地风沙地貌发育规模和风沙活动预测[J].地理研究,1991,10(3):51-58.
[26] Folk R L,Ward W C.Brazos river bar:a study of the significance of garin size parameters[J].Journal of Sedimentary Petrology,1957,27:3-27.
[27] 赵井东,施雅风,王杰.中国第四纪冰川演化序列与MIS对比研究的新进展[J].地理学报,2011(7):867-884.
[28] 靳建辉,李志忠.小冰期福建海岸沙丘的沉积环境[J].中国沙漠,2017,37(6):1111-1120.
[29] Syvitski J P M.Factor analysis of size frequency distributions:significance of factor solutions based on simulation experiments[M]//Syvitski J P M.Principles,Methods and Applications of Particle Size Analysis.Cambridge,UK:Cambridge University Press,1991:249-263.
[30] Prins M A,Postma G,Weltje G.Controls on the terrigenous sediment supply to the Arabian Sea during the late Quaternay:The Makran continental slope[J].Marine Geology,2000,169(3/4):351-371.
[31] 陈桥,刘东艳,陈颖军,等.粒级-标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比[J].地球与环境,2013,41(3):319-325.
[32] 何继山,梁杏,李静,等.天津滨海平原区深孔沉积物环境敏感粒度提取及其意义[J].地球科学-中国地质大学学报,2015,40(7):1216-1225.
[33] 陈国成,郑洪波,李建如,等.南海西部陆源沉积粒度组成的控制动力及其反映的东亚季风演化[J].科学通报,2007,52(23):2768-2776.
[34] 马龙,吴敬禄,吉力力·阿不都外力.新疆柴窝堡湖沉积物中环境敏感粒度组分揭示的环境信息[J].沉积学报,2012,30(5):945-954.
[35] 王可,郑洪波,Prins M,等.东海内陆架泥质沉积反映的古环境演化[J].海洋地质与第四纪地质,2008,28(4):1-10.
[36] Ding Z L,Sun J M,Liu D S.A sedimentological proxy indicator linking changes in loess and deserts in the quaternaray[J].Science in China(Series D),1999,42(2):146-152.
[37] 吴艳宏,杨向东,王苏民.鄱阳湖地区晚更新世古环境变迁[J].地质力学学报,1997,3(4):69-76.
[38] 凌超豪,龙进,贾玉连,等.赣北鄱阳湖地区土塘剖面第四纪红土地球化学特征及古气候意义[J].古地理学报,2015,17(5):699-708.
[39] 马振兴,黄俊华,魏源,等.鄱阳湖沉积物近8 ka来有机质碳同位素记录及其古气候变化特征[J].地球化学,2004,33(3):279-285.
[40] 姚檀栋,Thompson L G,施雅风,等.古里雅冰芯中末次间冰期以来气候变化记录研究[J].中国科学(D辑),1997,27(5):448-452.
[41] 程海,艾思本,王先锋,等.中国南方石笋氧同位素记录的重要意义[J].第四纪研究,2005,25(2):158-163.
[42] 施雅风,刘晓东,李炳元,等.距今40~30 ka青藏高原特强夏季风事件及其与岁差周期的关系[J].科学通报,1999,44(14):1475-1480.
[43] 赵侃,孔兴功,程海,等.MIS3晚期东亚季风强度和D O事件年龄[J].第四纪研究,2008,28(1):177-182.
文章导航

/