img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
生物与土壤

干旱胁迫下4种锦鸡儿属植物叶脉密度与最低水势关系

  • 姚广前 ,
  • 魏阳 ,
  • 毕敏慧 ,
  • 聂争飞 ,
  • 方向文
展开
  • 兰州大学 生命科学学院/草地农业生态系统国家重点实验室, 甘肃 兰州 730000
姚广前(1990-),男,甘肃庆阳人,博士研究生,研究方向为植物生理生态。E-mail:yaogq16@lzu.edu.cn

收稿日期: 2017-05-03

  修回日期: 2017-09-07

  网络出版日期: 2018-12-05

基金资助

国家自然科学基金项目(31670404,31422011,31370423,31460162,31160118);中央高校基本科研业务费项目(Lzujbky-2016-m01);甘肃省“飞天学者特聘教授”项目(860059)

Relationship between Leaf Vein Density and the Lowest Water Potential under Drought Stress in four Caragana Species

  • Yao Guangqian ,
  • Wei Yang ,
  • Bi Minhui ,
  • Nie Zhengfei ,
  • Fang Xiangwen
Expand
  • State Key Laboratory of Grassland Agro-Ecosystems/School of Life Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2017-05-03

  Revised date: 2017-09-07

  Online published: 2018-12-05

摘要

以内蒙古中间锦鸡儿(Caragana intermedia)、小叶锦鸡儿(Caragana microphylla),新疆北部粉刺锦鸡儿(Caragana pruinosa)、多刺锦鸡儿(Caragana spinosa)为材料,探讨4种植物叶脉特征是否存在差异,是否促进干旱胁迫下叶忍耐的最低水势的分化。结果表明:中间锦鸡儿、小叶锦鸡儿叶忍耐的最低水势分别为-6.0 MPa和-6.5 MPa,粉刺锦鸡儿、多刺锦鸡儿忍耐的最低水势分别为-4.0 MPa和-4.4 MPa;最低水势与一级脉密度、二级脉密度无线性关系,但随三级叶脉密度和细脉密度的增加而线性增加;最低水势随一级脉、二级脉、三级脉和细脉导管壁厚与导管腔直径比值的三次方(t/b3增加而增加,但只与细脉(t/b3显著线性相关。和新疆分布种相比,内蒙古分布种三级脉和细脉密度的增加,细脉抗塌陷能力的增强促进了叶干旱胁迫下忍耐的最低水势的下降。

本文引用格式

姚广前 , 魏阳 , 毕敏慧 , 聂争飞 , 方向文 . 干旱胁迫下4种锦鸡儿属植物叶脉密度与最低水势关系[J]. 中国沙漠, 2018 , 38(6) : 1252 -1258 . DOI: 10.7522/j.issn.1000-694X.2017.00089

Abstract

A comparison of the closely-related species Caragana intermedia and C. microphylla from Inner Mongolia to C. pruinosa and C. spinosa from Xinjiang was conducted to examine whether lowest predawn leaf water potential(Ψleaf) measured under severe drought stress was associated with variation in vein architecture(1°, 2°, 3° and minor vein density(t/b)3). The results showed that the lowest leaf water potential(Ψleaf) of C. intermedia and C. microphylla respectively was -6.0 MPa and -6.5 MPa, while C. pruinosa and C. spinosa respectively was -4.0 MPa and -4.4 MPa. The lowest water potential had no linear relation with 1° and 2° vein densities, while increasing with the 3°-order vein and minor vein densities; The lowest water potential incresed with the(t/b)3 of the ratio of conduit wall thickness to lumen diameter in 1°, 2°, 3° and minor vein. The research suggested that the increased density of tertiary veins, minor veins in Inner Mongolia species and the enhanced ability of minor veins to resist collapse promoted the decline of lowest water potential under leaf drought stress. compared with Caragana species growing in Xinjiang,

参考文献

[1] Engelbrecht B M J.Plant ecology:forests on the brink[J].Nature,2012,491(7426):675-677.
[2] Choat B,Jansen S,Brodribb T J,et al.Global convergence in the vulnerability of forests to drought[J].Nature,2012,491(7426):752-755.
[3] Mckown A D,Cochard H,Sack L.Decoding leaf hydraulics with a spatially explicit model:principles of venation architecture and implications for its evolution[J].The American Naturalist,2010,175(4):447-460.
[4] Brodribb T J,Feild T S.Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J].Ecology Letters,2010,13(2):175-183.
[5] Hao G Y,Hoffmann W A,Scholz F G,et al.Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems[J].Oecologia,2008,155(3):405-415.
[6] Scoffoni C,Rawls M,Mckown A,et al.Decline of leaf hydraulic conductance with dehydration:relationship to leaf size and venation architecture[J].Plant Physiology,2011,156(2):832-843.
[7] Sack L,Scoffoni C,Mckown A D,et al.Developmentally based scaling of leaf venation architecture explains global ecological patterns[J].Nature Communications,2012,3(837):837.
[8] Blackman C J,Brodribb T J,Jordan G J.Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms[J].New Phytologist,2010,188(4):1113-1123.
[9] Augé R M,Duan X R,Croker J L,et al.Foliar dehydration tolerance of twelve deciduous tree species[J].Journal of Experimental Botany,1998,49(321):753-759.
[10] 周道玮.锦鸡儿属植物分布研究[J].植物研究,1996(4):428-435.
[11] 马成仓.内蒙古高原锦鸡儿属(Caragana)几种优势植物生态适应性与地理分布的关系[D].天津:南开大学,2004:1-138.
[12] 赵一之.小叶、中间和柠条3种锦鸡儿的分布式样及其生态适应[J].生态学报,2005,25(12):3411-3414.
[13] 张明理,黄永梅,康云,等.锦鸡儿属植物在鄂尔多斯高原区系和植被中的作用[J].植物研究,2002,22(4):497-502.
[14] 李蒙蒙,刘丹,刘玉冰,等.基于叶片微形态结构评价10种锦鸡儿属(Caragana)植物的抗旱特征[J].中国沙漠,2016,36(3):708-717.
[15] 张新时.毛乌素沙地的生态背景及草地建设的原则与优化模式[J].植物生态学报,1994,18(1):1-16.
[16] 周道伟,刘钟龄,马毓泉.豆科锦鸡儿属(Caragana Fabr.)植物地理分布与分化研[J].植物研究,2005,25(4):271-287.
[17] Fang X W,Turner N C,Xu D H,et al.Limits to the height growth of Caragana korshinskii resprouts[J].Tree Physiology,2013,33(3):275.
[18] Fang X W,Turner N C,Palta J A,et al.The distribution of four Caragana species is related to their differential responses to drought stress[J].Plant Ecology,2014;215(1):133-142.
[19] 杜学武,郭晓玲,郭春玲,等.锦鸡儿治疗类风湿性关节炎临床研究[J].中国民族医药杂志,1998,4(2):11-13.
[20] 金景姬,方文龙,金正男,等.小叶锦鸡儿的抗炎作用[J].中国中药杂志,1993,19(5):306-308.
[21] 胡荫.锦鸡儿煎剂对体液免疫的影响[J].包头医学,1992,16(4):9.
[22] Sack L,Dietrich E M,Streeter C M,et al.Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(105):1567-1572.
[23] Blackman C J,Brodribb T J,Jordan G J.Leaf hydraulics and drought stress:response,recovery and survivorship in four woody temperate plant species[J].Plant Cell & Environment,2009,32(11):1584-1595.
[24] Brodribb T J,Cochard H.Hydraulic failure defines the recovery and point of death in water-stressed conifers[J].Plant Physiology,2009,149(1):575-584.
[25] Fu P L,Jiang Y J,Wang A Y,et al.Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian,tropical dry karst forest[J].Annals of Botany,2012,110(1):189-199.
[26] 石丽丽,蒋志荣,方向文.新疆沙冬青(Ammopiptanthus nanus)和蒙古沙冬青(A.monglicus)叶片解剖特征及抗旱性[J].中国沙漠,2018,38(1):157-162.
[27] 李江风.新疆气候[M].北京:气象出版社,1991.
[28] Allen C D.Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?[J].New Phytologist,2008,178(4):719-739.
文章导航

/