img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索
天气与气候

塔克拉玛干沙漠夏季晴空对流边界层大涡模拟

  • 王敏仲 ,
  • 徐洪雄 ,
  • 王寅钧 ,
  • 买买提艾力·买买提依明 ,
  • 张建涛
展开
  • 1. 中国气象科学研究院 灾害天气国家重点实验室, 北京 100081;
    2. 中国气象局乌鲁木齐沙漠气象研究所, 新疆 乌鲁木齐 830002
王敏仲(1979-),男,甘肃民勤人,副研究员,主要从事沙漠边界层气象领域的研究。E-mail:wangmz@idm.cn

收稿日期: 2018-03-07

  修回日期: 2018-03-28

  网络出版日期: 2018-12-05

基金资助

国家自然科学基金项目(91644223,41575008,41775030);国家公益性行业(气象)科研专项(GYHY201406001)

Large-Eddy Simulation of Summer Clear Sky Convective Boundary Layer in the Taklimakan Desert

  • Wang Minzhong ,
  • Xu Hongxiong ,
  • Wang Yinjun ,
  • Ali Mamtimin ,
  • Zhang Jiantao
Expand
  • 1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
    2. Institute of Desert Meteorology, Chinese Meteorological Administration, Urumqi 830002, China

Received date: 2018-03-07

  Revised date: 2018-03-28

  Online published: 2018-12-05

摘要

为了探索塔克拉玛干沙漠夏季晴空对流边界层湍流结构和热对流运动规律,利用沙漠腹地探空及地表通量观测资料,开展了晴空对流边界层的大涡模拟研究。结果表明:(1)沙漠夏季晴空条件下,对流边界层湍能主要由地表热力浮力对流产生,机械剪切对边界层湍能的贡献较小,小尺度湍涡对湍能的耗散随高度呈减弱趋势,边界层湍能变化呈现间歇性特点。(2)沙漠夏季晴空边界层中存在着有组织的热对流泡现象,热泡最大上升速度可超过4.0 m·s-1;沙漠热对流运动一般呈羽状和网状分布特征,在上升运动区周围伴随有大片的下沉辐散区域。(3)地表感热和逆温层顶盖强度是控制和影响沙漠对流边界层发展的两个重要因素,感热增大,对流边界层变暖且高度升高;感热减小,对流边界层变冷且高度降低。在感热不变的条件下,逆温层顶盖强度越强,越不利于对流边界层发展,反之则相反。

本文引用格式

王敏仲 , 徐洪雄 , 王寅钧 , 买买提艾力·买买提依明 , 张建涛 . 塔克拉玛干沙漠夏季晴空对流边界层大涡模拟[J]. 中国沙漠, 2018 , 38(6) : 1275 -1286 . DOI: 10.7522/j.issn.1000-694X.2018.00028

Abstract

Large-eddy simulation of clear sky convective boundary layer is carried out with sounding and surface flux observation data in the hinterland of Taklimakan Desert so as to explore the structure of the turbulence and the law of heat convection of summer clear sky boundary layer in the Desert. The study shows that:(1) Under the summer clear sky in the Taklimakan Desert, the boundary layer turbulent kinetic energy is mainly generated by the surface thermal buoyancy convection. The dissipation of turbulent kinetic energy triggered by small-scale eddy weakens as the increase of the height. The variation of the boundary layer turbulent kinetic energy has the feature of intermission.(2) Organized thermal bubbles appear in the boundary layer. The maximum ascending speed of the thermal bubbles exceeds 4.0 m·s-1; the thermal convection in Taklimakan Desert generally shows the pinnate and network-like distribution, with a large area of sinking divergence around the upward motion area.(3) The surface sensible heat and the intensity at the top of the inversion layer are two important factors controlling and influencing the development of the convective boundary layer in Taklimakan Desert. If the sensible heat increases, the boundary layer becomes warmer and its height also increases; if the sensible heat decreases, the boundary layer becomes colder and its height also decreases. When the sensible heat remains the same, the stronger the intensity at the top of the inversion layer is, the more negative influence it will have on the development of the convective boundary layer, vice versa.

参考文献

[1] 苗世光,蒋维楣,李昕,等.对流边界层大涡模式的改进及对夹卷速度的研究[J].大气科学,2001,25(1):25-37.
[2] 蔡旭晖,陈家宜.一个对流边界层大涡模式的建立与调试[J].大气科学,1995,19(4):415-421.
[3] Heus T,van Heerwaarden C C,Jonker H J J,et al.Formulation of the Dutch Atmospheric Large-Eddy Simulation(DALES) and overview of its applications[J].Geoscientific Model Development,2010,3:415-444.
[4] Deardorff J W.Numerical investigation of neutral and unstable planetary boundary layers[J].Journal of Atmospheric Sciences,1972,29:91-115.
[5] Deardorff J W.Theoretical expression for the counter-gradient vertical heat flux[J].Journal of Geophysical Research,1972,77:5900-5904.
[6] Deardorff J W.Stratocumulus-capped mixed layers derived from a three dimensional model[J].Boundary-Layer Meteorology,1980,18:495-527.
[7] Kim S W,Park S U.Coherent structures near the surface in a strongly sheared convective boundary layer generated by large-eddy simulation[J].Boundary-Layer Meteorology,2003,106:35-60.
[8] Letzel M O,Krane M,Raasch S.High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale[J].Atmospheric Environment,2008,42:8770-8784.
[9] Parker D J,Marsham J H,Rosenberg P D,et al.The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer[J].Journal of the Atmospheric Sciences,2015,72:693-713.
[10] 黄倩,王蓉,田文寿,等.风切变对边界层对流影响的大涡模拟研究[J].气象学报,2014,72(1):100-115.
[11] Liu Y Q,He Q,Zhang H S,et al.Improving the CoLM in Taklimakan Desert hinterland with accurate key parameters and an appropriate parameterization scheme[J].Advances in Atmospheric Sciences,2012,29(2):381-390.
[12] 何清,缪启龙,李帅,等.塔克拉玛干沙漠腹地的长波辐射变化特征[J].高原气象,2009,28(3):642-646.
[13] Wei W S,Wang M Z,He Q,et al.Analyses of temperature and humidity profiles and heat balance of the surface boundary-layer in the hinterland of the Taklimakan Desert[J].Chinese Science Bulletin,2008,53(2):22-30.
[14] 何清,缪启龙,李帅,等.塔克拉玛干沙漠腹地总辐射变化特征及影响因子分析[J].中国沙漠,2008,28(5):896-902.
[15] 金莉莉,何清,买买提艾力·买买提依明,等.塔克拉玛干沙漠腹地辐射平衡和反照率变化特征[J].中国沙漠,2014,34(1):215-224.
[16] 殷代英,屈建军,余晔,等.敦煌湖泊湿地生态系统地表辐射平衡特征[J].中国沙漠,2018,38(1):172-181.
[17] 艾力·买买提明,何清,高志球,等.塔克拉玛干沙漠近地层湍流热通量计算方法比较研究[J].中国沙漠,2008,28(5):948-954.
[18] 缪启龙,李兰兰,何清,等.南疆沙漠腹地大气边界层湍流通量特征的观测研究[J].气象与减灾研究,2008,31(3):15-21.
[19] 缪启龙,温雅婷,何清,等.沙漠腹地春夏季近地层大气湍流特征观测分析[J].中国沙漠,2010,30(1):167-174.
[20] 温雅婷,缪启龙,何清,等.塔中近地层春夏季湍强和湍能变化的观测研究[J].中国沙漠,2010,30(2):439-444.
[21] 温雅婷,焦冰,缪启龙,等.塔克拉玛干沙漠腹地近地层湍流能谱特征分析[J].中国沙漠,2012,32(6):1716-1722.
[22] 李超,董治宝,陈国祥,等.柴达木盆地察尔汗盐湖北侧沙丘黏性沉积物特征[J].中国沙漠,2018,38(1):68-75.
[23] 鲍锋,董治宝.青藏铁路察尔汗盐湖段风沙活动特征[J].中国沙漠,2017,37(4):621-625.
[24] Wang M Z,Wei W S,He Q,et al.Summer atmospheric boundary layer structure in the hinterland of Taklimakan Desert,China[J].Journal of Arid Land,2016,8(6):846-860.
[25] Wang M Z,Lu H,Ming H,et al.Vertical structure of summer clear-sky atmospheric boundary layer over the hinterland and southern margin of Taklamakan Desert[J].Meteorological Applications,2016,23:438-447.
[26] 李祥余,何清,艾力·买买提明,等.塔中春季晴天近地层温度、湿度和风速廓线特征[J].干旱区地理,2008,31(3):389-396.
[27] 王敏仲,魏文寿,何清,等.风廓线雷达对塔克拉玛干沙漠晴天边界层的探测分析[J].气象,2012,38(5):577-584.
[28] 缪启龙,王晶,何清,等.南疆沙漠腹地大气边界层气象要素廓线分析[J].气象与减灾研究,2009,32(2):6-10.
[29] 王蓉.干旱区边界层对流及示踪物垂直传输的大涡模拟研究[D].兰州:兰州大学,2014:31-33.
[30] 何清.塔克拉玛干沙漠塔中大气边界层结构及地气相互作用观测研究[D].南京:南京信息工程大学,2009:30-33.
[31] Stull R B.An Introduction to Boundary Layer Meteorology[M].Dordrecht,Netherlands:Kluwer Academic Plublisher,1988:6-13.
[32] 徐祥德,王寅钧,赵天良,等.高原东南缘大气近地层湍能特征与边界层动力、热力结构相关特征[J].气象,2014,40(10):1165-1173.
[33] 徐祥德,周明煜,陈家宜,等.青藏高原地-气过程动力、热力结构综合物理图象[J].中国科学(D辑),2001,31(5):428-440.
[34] 陈陟,周明煜,钱粉兰,等.我国西部高原大气边界层中的对流活动[J].应用气象学报,2002,13(2):142-145.
[35] 蔡旭辉,陈家宜.对流边界层中泡状结构的大涡模拟研究[J].大气科学,1997,21(2):223-230.
文章导航

/