img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索

荒漠绿洲湿地土壤水热盐动态过程及其影响机制

  • 孟阳阳 ,
  • 刘冰 ,
  • 刘婵
展开
  • 1. 中国科学院西北生态环境资源研究院 中国生态系统研究网络临泽内陆河流域研究站/中国科学院内陆河流域生态水文重点实验室, 甘肃 兰州 730000;
    2. 中国科学院大学, 北京 100049
孟阳阳(1993-),女,山西临汾人,硕士研究生,研究方向为生态水文学。E-mail:mengyangyang@lzb.ac.cn

收稿日期: 2017-07-11

  修回日期: 2017-10-27

  网络出版日期: 2019-02-14

基金资助

国家自然科学基金项目(41771038,41471024,41807150)

Dynamic Process of Water-Heat-Salt in Soil and the Mechanism in the Desert Oasis Wetland

  • Meng Yangyang ,
  • Liu Bing ,
  • Liu Chan
Expand
  • 1. Linze Inland River Basin Research Station/Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-07-11

  Revised date: 2017-10-27

  Online published: 2019-02-14

摘要

以甘肃临泽荒漠绿洲湿地为研究对象,通过对土壤温度、含水量、电导率及蒸散量的野外观测,在植物生长期和冻融期分别深入分析水热盐耦合运移过程及其影响因素,探讨水热梯度对盐分运移及其分布格局的控制作用。结果表明:土壤温度整体呈现出春夏季逐渐升高、秋冬季降低趋势。在冻结期,土壤表现为脱盐状态,表层电导率由2.8 mS·cm-1降到1.2 mS·cm-1;而在消融期为积盐状态,表层电导率由1.2 mS·cm-1升到3.7 mS·cm-1。在生长期,土壤含水量和电导率波动较为剧烈,表层含水量27%~43%,表层电导率3~5.5 mS·cm-1,土壤脱盐、积盐反复出现。全年蒸散量总体呈单峰变化趋势,年蒸散量507 mm;土壤电导率与蒸散量呈正比关系,与地下水位呈负相关关系;蒸散发作用是土壤表层积盐的主要驱动力,而地下水波动影响着湿地脱盐、洗盐过程。因此,荒漠绿洲湿地土壤盐分累积过程是水分运移和热量传输过程发生变化的结果。

本文引用格式

孟阳阳 , 刘冰 , 刘婵 . 荒漠绿洲湿地土壤水热盐动态过程及其影响机制[J]. 中国沙漠, 2019 , 39(1) : 149 -160 . DOI: 10.7522/j.issn.1000-694X.2017.00101

Abstract

The study was carried out at the desert oasis wetland in the middle reaches of China's Heihe River, where soil temperature, water content, electrical conductivity and evapotranspiration were measured to analyze the coupled transport of water-heat-salt and its influencing factors during the growing period and the freezing and thawing period, respectively, to discuss the controlling effects of the water-heat gradient on the migration process and the distribution pattern of salt. The results showed that soil temperature increased in spring and summer and decreased in autumn and winter. In the freezing period, soil desalinization was occurred. The surface electrical conductivity was reduced from 2.8 mS·cm-1 to 1.2 mS·cm-1. However, in the thawing period, soil salt accumulation was occurred. The surface electrical conductivity was increased from 1.2 mS·cm-1 to 3.7 mS·cm-1. During the growth period, the fluctuation of soil water content and electrical conductivity was significant, and showed the alternate appearance of desalination and salt accumulation. The surface water content ranged 27% to 43%, and the surface electrical conductivity ranged 3 mS·cm-1 to 5.5 mS·cm-1. The mean annual evapotranspiration totaled 507mm. And evapotranspiration showed a single peak trend. The relationship of the soil electrical conductivity and evapotranspiration was positively correlated. But the relationship of the surface electrical conductivity and groundwater depth was negatively correlated. Therefore, evapotranspiration was the main driving force of soil salt accumulation in soil surface, while the groundwater fluctuations affected the wetland desalination and the salt leaching process. Therefore, the accumulation of soil salinity in the desert oasis wetland was the result of the change of the water transport and the heat transfer.

参考文献

[1] 梅荣.干旱区绿洲湿地生态系统研究的意义和重点[J].内蒙古科技与经济,2007,139(9):115-116.
[2] 王玉刚,肖笃宁,李彦.三工河流域中上游绿洲土壤盐化的时空动态[J].中国沙漠,2008,28(3):478-484.
[3] Castañeda C,Herrero J.Assessing the degradation of saline wetlands in an arid agricultural region in Spain[J].Catena,2008,72:205-213.
[4] Cooper A,Shine T,McCann T,et al.An ecological basis for sustainable land use of Eastern Mauritanian wetlands[J].Journal of Arid Environments,2006,67:116-141.
[5] 赵荣昌,巴建文,秦晓燕,等.防止张掖城市湿地周边地区土壤盐渍化的地下水临界深度确定[J].地下水,2011,33(1):34-35,122.
[6] 郑冬梅,许林书,罗金明,等.松嫩平原盐沼湿地冻融期水盐动态研究——吉林省长岭县十三泡地区湖滩地为例[J].湿地科学,2005,3(1):48-53.
[7] 邹平,杨劲松,福原辉幸,等.蒸发条件下土壤水盐热运移的实验研究[J].土壤,2007,39(4):615-620.
[8] 梁建财.地面覆盖对盐渍土壤水热盐运移及作物生长调控机制研究[D].呼和浩特:内蒙古农业大学,2015.
[9] 李瑞平.冻融土壤水热盐运移规律及其SHAW模型模拟研究[D].呼和浩特:内蒙古农业大学,2007.
[10] Xu L G,Yang J S,Zhang Q,et al.Salt-water transport in unsaturated soils under crop planting:dynamics and numerical simulation[J].Pedosphere,2005,15:634-640.
[11] Xu X,Huang G H,Sun C,et al.Assessing the effects of water table depth on water use,soil salinity and wheat yield:searching for a target depth for irrigated areas in the upper Yellow River basin[J].Agricultural Water Management,2013,125:46-60.
[12] 潘延鑫.陕西卤泊滩农田与沟渠湿地水盐监测研究[D].西安:西安理工大学,2011.
[13] 李会杰.旱区河滩湿地水盐运移与根系吸水的模型模拟[D].陕西杨凌:西北农林科技大学,2015.
[14] 李瑞平,史海滨,赤江刚夫,等.基于水热耦合模型的干旱寒冷地区冻融土壤水热盐运移规律研究[J].水利学报,2009,40(4):403-412.
[15] Liu B,Zhao W Z,Wen Z J,et al.Response of water and energy exchange to the environmental variable in a desert-oasis wetland of Northwest China[J].Hydrol Process,2014,28:6098-6112.
[16] Allen R G,Pereira L S,Howell T A,et al.Evapotranspiration information reporting:I.factors governing measurement accuracy[J].Agricultural Water Management,2011,98:899-920.
[17] Allen R G,Pereira L S,Howell T A,et al.Evapotranspiration information reporting:Ⅱ.recommended documentation[J].Agricultural Water Management,2011,98:921-929.
[18] Unland H E,Houser P R,Shuttleworth W J,et al.Surface flux measurement and modeling at a semi-arid Sonoran Desert site[J].Agricultural & Forest Meteorology,1996,82:119-153.
[19] Kurc S A,Small E E.Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season,central New Mexico[J].Water Resource Research,2004,40:W09305.
[20] Ma N,Zhang Y,Xu C Y,et al.Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau:comparisons and implications[J].Journal of Geophysical Research:Biogeosciences,2015,120:1638-1657.
[21] Peters E B,McFadden J P,Montgomery R A.Biological and environmental controls on tree transpiration in a suburban landscape[J].Journal of Geophysical Research:Biogeosciences,2010,115:G04006.
[22] 高彦花.渤海湾盐碱地土壤水盐动态及耐盐植物改良盐渍土研究[D].北京:中国林业科学研究院,2011.
[23] 张骜,王振华,王久龙,等.蒸发条件下地下水对土壤水盐分布的影响[J].干旱地区农业研究,2015,33(6):229-233,253.
[24] 李志华.季节性冻融期盐渍土水热盐耦合关系研究——以玛纳斯河流域142团为例[D].兰州:兰州大学,2011.
[25] Cary J W,Mayland H F.Salt and water movement in unsaturated frozen soil[J].Soil Science Society of America Journal,1972,36(4):549-555.
[26] 叶乐安,刘春平,邵明安.土壤水、热和溶质耦合运移研究进展[J].湖南师范大学:自然科学学报,2002,25(2):88-92.
[27] Boike J,Ippisch O,Overduin P P,et al.Water,heat and solute dynamics of a mud boil,Spitsbergen[J].Geomorphology,2008,95:61-73.
[28] 邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
[29] Chen Y P,Shi M H,Li X C.Experimental investigation on heat,moisture and salt transfer in soil[J].Science Direct,2006,33:1122-1129.
[30] 姜国军.北疆滴灌小麦土壤水热盐动态效应[D].石河子:石河子大学,2014.
[31] Wu M.Coupled Processes in Seasonally Frozen Soils:Merging Experiments and Simulations[D].Trita LWR,2016.
[32] 李亮,史海滨,贾锦凤,等.内蒙古河套灌区荒地水盐运移规律模拟[J].农业工程学报,2010,26(1):31-35.
[33] 孙旭伟,李生宇,靳正忠,等.3种保水措施影响下的风沙土水盐及地温特征[J].干旱区研究,2011,28(2):215-221.
[34] 刘小燕,刘巧玲,刘廷玺,等.科尔沁草甸地冻融期土壤水热盐动态迁移规律[J].水科学进展,2015,26(3):331-339.
[35] 宋战超,夏江宝,赵西梅,等.不同地下水矿化度条件下柽柳土柱的水盐分布特征[J].中国水土保持科学,2016,14(2):41-48.
[36] 李明,宁立波,卢天梅.土壤盐渍化地区地下水临界深度确定及其水位调控[J].灌溉排水学报,2015,34(5):46-50.
[37] 夏江宝,赵西梅,赵自国,等.不同潜水埋深下土壤水盐运移特征及其交互效应[J].农业工程学报,2015,31(15):93-100.
文章导航

/