img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索

极端干旱区花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)叶片凋落物分解特征

  • 李成道 ,
  • 李向义 ,
  • Henry J Sun ,
  • 李磊 ,
  • 林丽莎
展开
  • 1. 中国科学院新疆生态与地理研究所 荒漠与绿洲生态国家重点实验室, 新疆 乌鲁木齐 830011;
    2. 中国科学院新疆生态与地理研究所 新疆策勒荒漠草地生态系统国家野外科学观测实验站, 新疆 乌鲁木齐 830011;
    3. 中国科学院大学, 北京 100049;
    4. 美国沙漠研究所, 美国 内华达 拉斯维加斯 89119
李成道(1992-),男,山东临沂人,硕士研究生,主要从事干旱区植物生理方面研究。E-mail:lichengdao16@mails.ucas.ac.cn

收稿日期: 2019-02-13

  修回日期: 2019-03-08

  网络出版日期: 2019-04-11

基金资助

国家自然科学基金项目(41877420,41571057,41807335);博士后创新人才支持计划项目(BX201700279);中国科学院西部青-学者B类项目(2015-XBQN-B-21)

Decomposition Characteristics of Karelinia caspia, Alhagi sparsifolia and Populus euphratica Leaves in Extremely Arid Areas

  • Li Chengdao ,
  • Li Xiangyi ,
  • Henry J Sun ,
  • Li Lei ,
  • Lin Lisha
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. Cele National Field Science Observation and Research Station of Desert Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Desert Research Institute, Las Vegas, Nevada 89119, USA

Received date: 2019-02-13

  Revised date: 2019-03-08

  Online published: 2019-04-11

摘要

为探究极端干旱区凋落物分解特征,利用凋落物分解袋法,以塔克拉玛干南缘策勒绿洲边缘荒漠地区优势植物花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)的叶片凋落物为对象进行分解试验,探究极端干旱区凋落物分解特征及主要影响因素。结果表明:(1)极端干旱区凋落物分解主要在凋落次年的5-9月,有机物的损失是质量损失的重要原因;(2)对于水溶性盐含量较高的凋落物,水溶性盐损失在质量损失中占较高比例;(3)降雨是影响极端干旱区凋落物分解的重要因素,降雨与凋落物分解的Pearson相关性显著高于温度和太阳辐射。

本文引用格式

李成道 , 李向义 , Henry J Sun , 李磊 , 林丽莎 . 极端干旱区花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)叶片凋落物分解特征[J]. 中国沙漠, 2019 , 39(2) : 193 -201 . DOI: 10.7522/j.issn.1000-694X.2019.00009

Abstract

To explore the litter decomposition characteristics in extreme arid regions, three types of leaves litter (Karelinia caspia, Alhagi sparsifolia and Populus euphratica) were selected as test objects. Using litter bag method, litter decomposition experiments were conducted in the desert area of the southern margin of Taklimakan Desert. The results showed that:(1)After one year decomposition in extreme arid areas, litter decomposition is mainly concentrated in May to September, the loss of organic matter is an important reason of weight loss; (2) For litter with high water soluble salt content, water soluble salt loss accounts for a higher proportion of weight loss; (3) Rainfall is an important factor affecting litter decomposition in extreme arid areas. The relationship between rainfall and the Pearson correlation of litter decomposition is significantly higher than between temperature and solar radiation.

参考文献

[1] 杨红玲,李玉霖,宁志英,等.科尔沁沙地优势固沙灌木叶片凋落物分解的主场效应[J].中国沙漠,2019,39(5):1-9.
[2] Brandt L A,Bohnet C,King J Y.Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems[J].Journal of Geophysical Research Biogeosciences,2015,114(G2):157-163.
[3] 曾加芹.森林凋落物研究开展[J].防护林科技,2017(增刊1):80-83.
[4] 李宜浓,周晓梅,张乃莉,等.陆地生态系统混合凋落物分解研究进展[J].生态学报,2016,36(16):4977-4987.
[5] Raich J W,Schlesinger W H.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus Series B-chemical & Physical Meteorology,1992,44(2):81-99.
[6] Jiang Y F,Yin X Q,Wang F.The influence of litter mixing on decomposition and soil fauna assemblages in a Pinus koraiensis mixed broad-leaved forest of the Changbai Mountains,China[J].European Journal of Soil Biology,2013,55(1) 28-39.
[7] 严海元,辜夕容,申鸿.森林凋落物的微生物分解[J].生态学杂志, 2010, 29(9):1827-1835.
[8] Gallo M E,Andrea P A,Kylea J O,et al.Photoacceleration of plant litter decomposition in an arid environment[J].Soil Biology & Biochemistry,2009,41(7):1433-1441.
[9] Throop H L,Steven R.Resolving the dryland decomposition conundrum:some new perspectives on potential drivers[J].Progress in Botany,2009,70:171-194.
[10] Parton W.Supporting online material for global-scale similarities in nitrogen release patterns during long-term decomposition[J].Science,2007,315(5810):361-364.
[11] Austin A T,Lucía V.Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J].Nature,2006,442(7102):555-558.
[12] Duguay K J,Klironomos J N.Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi[J].Applied Soil Ecology,2000,14(2):157-164.
[13] Foereid B,Jessica B,Wolfram M A,et al.Does light exposure make plant litter more degradable?[J].Plant & Soil,2010,333(1/2):275-285.
[14] Yahdjian L,Osvaldo E S,Amy T A.Differential controls of water input on litter decomposition and nitrogen dynamics in the patagonian steppe[J].Ecosystems,2006,9(1):128-141.
[15] Hal H,Brizgys K,Field C B.Litter decomposition in a california annual grassland:interactions between photodegradation and litter layer thickness[J].Ecosystems,2008,11(4):545-554.
[16] Gholz H L,Wedin D A,Smitherman S M,et al.Long-term dynamics of pine and hardwood litter in contrasting environments:toward a global model of decomposition[J].Global Change Biology,2010,6(7):751-765.
[17] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2013:257-263.
[18] Aerts R.Climate,Leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship[J].Oikos,1997,79(3):439-449.
[19] Taylor B R,Dennis P.Nitrogen and lignin content as predictors of litter decay rates:a microcosm test[J].Ecology,1989,70(1):97-104.
[20] Pérezharguindeguy N,Sandra D,Johannes H C,et al.Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina[J].Plant & Soil,2000,218(1/2):21-30.
[21] Pauli F.Soil fertility problem in arid and semi-arid lands[J].Nature,1964,204(4965):1286-1288.
[22] Pucheta E,María L,Carola M,et al.Litter decomposition in a sandy monte desert of western Argentina:influences of vegetation patches and summer rainfall[J].Austral Ecology,2010,31(7):808-816.
[23] Strojan C L,David C R,Turner F B.Relationship of leaf litter decomposition rates to rainfall in the Mojave Desert[J].Ecology,1987,68(3):1101.
[24] Köchy M,Scott D W. Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie[J].Ecology,1997,78(3):732-739.
[25] 黄刚,周丽,唐立松,等.荒漠植物凋落物光降解特征随降水梯度的变化[J].生态学杂志,2013,32(10):2574-2582.
[26] Georgiou C D,Henry J S,Christopher P M,et al.Evidence for photochemical production of reactive oxygen species in desert soils[J].Nature Communications,2015(6):7100.
[27] 张慧玲,宋新章,哀建国,等.增强紫外线-B辐射对凋落物分解的影响研究综述[J].浙江农林大学学报,2010,27(1):134-142.
[28] George B,Ed S,André M,et al.Photodegradation and photostabilisation of wood-the state of the art[J].Polymer Degradation & Stability,2005,88(2):268-274.
[29] Heitner C.Photochemistry of Lignocellulosic Materials[M]//Heitner C.Acs Symposium Series 531.Washinton DC, USA:American Chemical Society,1993:531.
文章导航

/