Studying particle size distribution models is the basis for understanding the formation process of gobi. However, the frequency distribution of surface sediment components in gobi desert are characterized by multimodal, and the general particle size distribution function with Log-normal or Weibull distribution are difficult to be used to correctly express the particle size distribution characteristics of sediments with multimodal. Therefore, this study was designed to analyze the particle size distribution of the gobi surface sediments using the monotonicaly decreasing function P(di)=Cdi-μexp(-di/Dc). The results showed that this function was able to reflect the particle size distribution characteristics of gobi surface sediment components with the goodness of fit as R2>0.99. The range of parameter C was 52.64-166.75, μ was 0.083-0.108, and Dc was 0.103-2.336. Under the effect of sorting, the components for jumping movement was large with relatively small μ and Dc values in sand-rich surface of gobi. The residual components for wind-induced erosion and creep movement was large with relatively large μ and Dc values in gravel-rich surface of gobi. The parameters using particle size model can reveal the sorting sedimentary characteristics of alluvial fan gobi and provide a new indicating parameter for analyzing the formation process of gobi surface and the wind-induced erosion.
[1] 中国黑戈壁地区生态本底科学考察队.中国黑戈壁研究[M].北京:科学出版社,2014:27-39.
[2] 陈思宇,黄建平,李景鑫,等.塔克拉玛干沙漠和戈壁沙尘起沙、传输和沉降的对比研究[J].中国科学(地球科学),2017,47(8):939-957.
[3] 冯益明,吴波,姚爱冬,等.戈壁分类体系与编目研究[J].地理学报,2014,69(3):391-398.
[4] 申元村,王秀红,程维明,等.中国戈壁综合自然区划研究[J].地理科学进展,2016,35(1):57-66.
[5] 李璐,鹿化煜,王晓勇,等.5 ka BP以来阿尔金山北缘冲洪积扇沉积环境变化和戈壁动力过程初步研究[J].中国沙漠,2017,37(1):65-72.
[6] 钱广强,董治宝,罗万银,等.基于数字图像的中国西北地区戈壁表面砾石形貌特征研究[J].中国沙漠,2014,34(3):625-633.
[7] Alfaro S C,Gaudichet A,Gomes L,et al.Mineral aerosol production by wind erosion:aerosol particle sizes and binding energies[J].Geophysical Research Letters,1998,25(7):GL00502.
[8] Palchan D,Stein M,Almogi-Labin A,et al.Dust transport and synoptic conditions over the Sahara-Arabia deserts during the MIS6/5 and 2/1 transitions from grain-size,chemical and isotopic properties of Red Sea cores[J].Earth and Planetary Science Letters,2013,382:125-139.
[9] Gupta S C,Larson W E.Estimating soil-water retention characteristics from particle size distribution,organic matter percent,and bulk density[J].Water Resource Research,1979,15(6):1633-1635.
[10] Gardner W R.Representation of soil aggregate size distribution by a logarithmicnormal distribution[J].Soil Science Society of America Journal,1956,20(2):151-153.
[11] Zobeck T M,Gill T E,Popham T W.A two-parameter Weibull function to describe airborn dust particle size distributions[J].Earth Surface Processes and Landforms,1999,24(10):943-955.
[12] Nemes A,Wösten J H M,Lilly A,et al.Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases[J].Geoderma,1999,90(3):187-202.
[13] Flenley E C,Fieller N,Gilbertson D.The statistical analysis of ‘mixed’ grain size distributions from aeolian sands in the Libyan Pre-Desert using log skew Laplace models[J].Geological Society London Special Publications,1987,35(1):271-280.
[14] 殷志强,秦小光,吴金水,等.中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究[J].沉积学报,2009,27(2):343-351.
[15] 肖舜,陈发虎,强明瑞,等.青海苏干湖表层沉积物粒度分布模式与大气粉尘记录[J].地理学报,2007,62(11):1153-1164.
[16] Li Y,Huang C M,Wang B L,et al.A unified expression for grain size distribution of soils[J].Geoderma,2017:288.
[17] 董智,王丽琴,杨文斌,等.额济纳盆地戈壁沉积物粒度特征分析[J].中国水土保持科学,2013,11(1):32-38.
[18] Wang H B,Jia X P,Xiao J H,et al.Provenance and geochemical characteristics of the silt and clay fraction in the Taklamakan Desert,Northwestern China[J].Arid Land Research and Management,2012,26(2):85-102.
[19] 孙惠凤,曹成林,宋玉鹏.激光粒型分析法在沙质沉积物粒度分析中的应用[J].海洋地质与第四纪地质,2015,35(2):185-192.
[20] 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003:42.
[21] 李振山,陈广庭,冯起,等.塔克拉玛干沙漠腹地纵向沙垄表面沙物质粒度特征[J].干旱区资源与环境,1998(1):22-29.
[22] 汪言在,伍永秋,苟诗薇.塔克拉玛干沙漠中部地区两类半隐蔽格状沙障内部沉积粒度特征浅析[J].中国沙漠,2009,29(6):1056-1062.
[23] Visher G S.Grain-size distributions and depositional processes[J].Journal of Sedimentary Petrology,1965,39(3):1074-1106.
[24] Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].London,UK:Chapman and Hall,1941.
[25] 屈建军,黄宁,拓万全,等.戈壁风沙流结构特性及其意义[J].地球科学进展,2005(1):19-23.
[26] Li Y,Zhou X J,Su P C,et al.A scaling distribution for grain composition of debris flow[J].Geomorphology,2013,192:30-42.
[27] 李泳,苟万春,王保亮,等.颗粒组成与泥石流运动的涨落[J].山地学报,2016,34(4):468-475.
[28] 罗万银,董治宝,钱广强,等.戈壁表层沉积物地球化学元素组成及其沉积意义[J].中国沙漠,2014,34(6):1441-1453.
[29] 王丽琴,李红丽,董智,等.额济纳盆地戈壁纵剖面沉积物粒度参数分析[J].水土保持研究,2014,21(1):152-156.
[30] 曹晓阳,冯益明.噶顺戈壁地表砾石粒度特征分析[J].中国水土保持科学,2016,14(1):46-52.
[31] 东丽娜.中国西北地区晚第四纪戈壁演化初探[D].南京:南京大学,2014.
[32] 吕延武,顾兆炎,Ala A,等.内蒙古额济纳盆地戈壁10Be暴露年龄与洪积作用的演化[J].科学通报,2010,55(增刊2):2619-2627.