img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索

丝绸之路经济带气溶胶的人为成份比例

  • 张芝娟 ,
  • 陈斌 ,
  • 衣育红 ,
  • 刘晶晶 ,
  • 贾瑞 ,
  • 黄建平
展开
  • 1. 兰州大学 大气科学学院, 甘肃 兰州 730000;
    2. 兰州大学 半干旱气候变化教育部重点实验室, 甘肃 兰州 730000;
    3. 兰州大学 资源环境学院, 甘肃 兰州 730000;
    4. 西安理工大学 机械与精密仪器工程学院, 陕西 西安 710000
张芝娟(1990-),女,山西岢岚人,博士研究生,研究方向为卫星遥感。E-mail:zhangzj2010@lzu.edu.cn

收稿日期: 2018-07-12

  修回日期: 2018-09-04

  网络出版日期: 2019-07-12

基金资助

国家自然科学基金项目(41521004,41375032,41775021,41305026)

Anthropogenic Proportion of Aerosols over the Silk Road Economy Belt

  • Zhang Zhijuan ,
  • Chen Bin ,
  • Yi Yuhong ,
  • Liu Jingjing ,
  • Jia Rui ,
  • Huang Jianping
Expand
  • 1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;
    2. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
    3. College of Earth Environment Sciences, Lanzhou University, Lanzhou 730000, China;
    4. School of Mechanical and Instrument Engineering, Xi'an University of Technology, Xi'an 710000, China

Received date: 2018-07-12

  Revised date: 2018-09-04

  Online published: 2019-07-12

摘要

利用MERRA-2(The Modern-Era Retrospective Analysis for Research and Applications,version 2)再分析资料,分析了1980—2017年丝绸之路经济带沿线区域(30°—50°N、10°—110°E)硫酸盐、黑碳、有机碳、沙尘气溶胶的时空分布特征,然后将沙尘分为自然沙尘和人为沙尘,进而计算出自然气溶胶和人为气溶胶在不同季节的空间分布,定量给出了人为气溶胶的贡献。结果表明:在丝绸之路经济带沿线的东欧地区,经济发达、工业活跃,硫酸盐是最主要的气溶胶类型,占总气溶胶光学厚度的64%,总气溶胶光学厚度每年下降0.0035;在地表裸露、沙尘活跃的5个欠发达地区,沙尘是最主要的气溶胶类型,占总气溶胶光学厚度的46%~65%,其中巴基斯坦-印度地区总气溶胶光学厚度每年增加0.0059;人为气溶胶对总气溶胶的平均贡献为62%~65%;6个区域中北非地区人为气溶胶所占比例最小,为32.8%,东欧地区最大,为73.5%;随着人口密度的增加,人为气溶胶的光学厚度也在增加。人为气溶胶占总气溶胶的比例很高,而且与人口密度正相关。

本文引用格式

张芝娟 , 陈斌 , 衣育红 , 刘晶晶 , 贾瑞 , 黄建平 . 丝绸之路经济带气溶胶的人为成份比例[J]. 中国沙漠, 2019 , 39(4) : 16 -26 . DOI: 10.7522/j.issn.1000-694X.2018.00098

Abstract

The spatial and temporal distributions of sulfate, black carbon, organic carbon, and dust aerosols over the regions along the Silk Road Economic Belt, with a decreased rate of 0.0035 per year for total AOD. Mineral dust is the dominant aerosol type in five undeveloped regions where were covered with barren soil and accompanied by active dust activities, accounting for 46%-65% of the total AOD. Total AOD increased at a rate of 0.0059 per year over Pakistan-India region and the mean contribution of anthropogenic aerosol ranged between 62% and 65% in four seasons. Among six regions, the contribution of anthropogenic aerosol was the smallest in North Africa with a minimum of 32.8%, and the largest in Eastern Europe with a maximum of 73.5%. The optical depth of anthropogenic aerosols increased with the increase of population density. In summary, our results indicated that anthropogenic aerosols were predominated over the region along the Silk Road Economic Belt throughout the year and were positively related to population density.

参考文献

[1] Li Z,Li C,Chen H,et al.East Asian studies of tropospheric aerosols and their impact on regional climate (EAST-AIRC):an overview[J].Journal of Geophysical Research-Atmospheres,2011,116(4):220-237.
[2] Huang J,Wang T,Wang W,et al.Climate effects of dust aerosols over East Asian arid and semiarid regions[J].Journal of Geophysical Research-Atmospheres,2015,119(19):11398-11416.
[3] Yan H,Li Z,Huang J,et al.Long-term aerosol-mediated changes in cloud radiative forcing of deep clouds at the top and bottom of the atmosphere over the Southern Great Plains[J].Atmospheric Chemistry & Physics,2014,14(14):4599-4625.
[4] Chen S,Huang J,Qian Y,et al.Effects of aerosols on autumn precipitation over mid-eastern China[J].Journal of Tropical Meteorology,2014,20(3):242-250.
[5] Prospero J M,Ginoux P,Torres O,et al.Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product[J].Reviews of Geophysics,2002,40(1):1-31.
[6] Tegen I,Werner M,Harrison S,et al.Relative importance of climate and land use in determining present and future global soil dust emission[J].Geophysical Research Letters,2004,31:L05105.
[7] Huang J,Guan X,Ji F,et al.Enhanced cold-season warming in semi-arid regions[J].Atmospheric Chemistry & Physics,2012,12:5391-5398.
[8] Moulin C,Chiapello I.Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel sources from TOMS satellites (197-2000)[J].Geophysical Research Letters,2004,31:GL018931.
[9] Mahowald N M,Luo C.A less dusty future?[J].Geophysical Research Letters,2003,30:GL017880.
[10] Huang J,Liu J,Chen B,et al.Detection of anthropogenic dust using CALIPSO lidar measurements[J].Atmospheric Chemistry & Physics,2015,15:10163-10198.
[11] Guan X,Huang J,Zhang Y,et al.The relationship between anthropogenic dust and population over global semi-arid regions[J].Atmospheric Chemistry & Physics,2016,16(8):5159-5169.
[12] Bi J,Huang J,Holben B,et al.Comparison of key absorption and optical properties between pure and transported anthropogenic dust over East and Central Asia[J].Atmospheric Chemistry & Physics,2016,16:1-37.
[13] Bi J,Huang J,Shi J,et al.Measurement of scattering and absorption properties of dust aerosol in a Gobi farmland region of northwestern China-a potential anthropogenic influence[J].Atmospheric Chemistry & Physics,2017,17:1-41.
[14] 彭艳梅,王舒,肖高翔,等.塔克拉玛干沙漠腹地塔中地区大气气溶胶散射系数影响因子[J].中国沙漠,2018,38(2):384-392.
[15] 茹建波,王天河,李积明,等.东亚沙尘源区晴空和云上沙尘气溶胶特征[J].中国沙漠,2018,38(2):372-383.
[16] Chen S,Huang J,Jingxin L,et al.Comparison of dust emissions,transport,and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011[J].Science China Earth Sciences,2017,60(7):1-18.
[17] Chen S,Huang J,Kang L,et al.Emission,transport,and radiative effects of mineral dust from the Taklimakan and Gobi deserts:comparison of measurements and model results[J].Atmospheric Chemistry & Physics,2017,17:1-43.
[18] New M,Hulme M,Jones P.Representing twentieth-century space-time climate variability.part I:development of a 1961-90 mean monthly terrestrial climatology[J].Journal of Climate,1999,12(12):829-856.
[19] Mitchell T D,Jones P D.An improved method of constructing a database of monthly climate observations and associated high-resolution grids[J].International Journal of Climatology,2005,25(6):693-712.
[20] Gelaro R,Mccarty W,Suárez M J,et al.The modern-era retrospective analysis for research and applications,version 2(MERRA-2)[J].Journal of Climate,2017,30(14):5419-5454.
[21] Liu J,Huang J,Chen B,et al.Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2015,153:102-112.
文章导航

/