基于2013—2015年CALIPSO星载激光雷达的Level 2数据集资料,对中国西北干旱半干旱区的气溶胶进行了分类研究,并对不同种类气溶胶在不同光学厚度下的年均发生频率做以分析。结果表明:沙尘气溶胶整体随气溶胶光学厚度值增大呈下降趋势;而污染沙尘型气溶胶在6类型气溶胶出现频率最高;大陆污染型气溶胶频率集中在[0.1,0.35],随气溶胶光学厚度值的增大频率呈升高趋势;烟尘型气溶胶频率集中在[0.2,0.4],在不同气溶胶光学厚度值情况下,频率较大陆污染型气溶胶高,随气溶胶光学厚度值的增大频率呈上升趋势;从四季来看,秋季和冬季当气溶胶光学厚度值大于0.1时,大陆污染型气溶胶频率明显高于沙尘气溶胶。春季,河西地区的气溶胶光学厚度高于其他三季,而在研究区域的南部和东南部,秋、冬季的气溶胶光学厚度值高于春、夏季。气溶胶光学厚度秋季 > 春季 > 夏季 > 冬季。
Based on CALIPSO observation data of Level 2 from 2013 to 2015, the Aerosols of arid and semi-arid areas in Northwest China are classified and the annual average frequency of different aerosol under different optical thickness is analyzed. It shows that the dust aerosol is decreasing with the increase of aerosol optical thickness, while the polluted dust frequency of the six types of aerosols is the highest; The frequency of the polluted continental aerosol is mainly in[0.1,0.35], and the frequency increases with the increase of aerosol optical thickness. The frequency of smoke aerosol is mainly concentrated in[0.2,0.4], in the case of different aerosol optical thickness, the frequency is higher than that of the polluted continental aerosol. With the increase of aerosol optical thickness, the frequency tends to increase. In autumn and winter, when the aerosol optical thickness is greater than 0.1, the frequency of the polluted continental aerosol is significantly higher than that of the dust aerosol. In spring, the aerosol optical thickness of Hexi area is higher than that of the other three seasons. In the southern and southeast parts of the study area, the aerosol optical thickness of autumn and winter is higher than that of the spring and summer two seasons. The aerosol optical thickness presents in autumn>spring>summer>winter.
[1] 罗云峰,周秀骥,李维亮.大气气溶胶辐射强迫及气候效应的研究现状[J].地球科学进展,1998,13(6):572-581.
[2] 张小曳,廖宏,王芬娟.对IPCC第五次评估报告气溶胶-云对气候变化影响与响应结论的解读[J].气候变化研究进展,2014,10(1):37-39.
[3] Li Z Q,Niu F,Fan J W,et al.The long-term impacts of aerosols on the vertical development of clouds and precipitation[J].Nature Geoscience,2011,4:888-894.
[4] 陈好,顾行发,程天海,等.中国地区气溶胶类型特性分析[J].遥感学报,2013,17(6):1559-1571.
[5] 范娇,郭宝峰,何宏昌.基于MODIS数据的杭州地区气溶胶光学厚度反演[J].光学学报,2015,35(1):101001.
[6] 宿兴涛,李鲲,魏强,等.东亚沙尘光学特性及其对辐射强迫和温度的影响[J].中国沙漠,2016,36(5):1381-1390.
[7] 贾臣,孙林,陈允芳,等.查找表方法确定气溶胶类型[J].遥感学报,2017,21(3):386-395.
[8] 刘秉义,庄全风,秦胜光,等.基于高光谱分辨率激光雷达的气溶胶分类方法研究[J].红外与激光工程,2017,46(4):1-13.
[9] Huang J P,Liu J J,Chen B,et al.Nasiri:detection of anthropogenic dust using CALIPSO lidar measurements[J].Atmospheric Chemistry and Physics,2015,15:11653-11665.
[10] 王文彩.利用A_Train卫星资料研究PACDEX实验期间源区和沉降区沙尘云的微物理及辐射特性[D].兰州:兰州大学,2010.
[11] 徐成鹏,葛觐铭,黄建平,等.基于CALIPSO星载激光雷达的中国沙尘气溶胶观测[J].中国沙漠,2014,34(5):1353-1362.
[12] 陈勇航,毛晓琴,黄建平,等.一次强沙尘输送过程中气溶胶垂直分布特征研究[J].中国环境科学,2009,29(5):449-454.
[13] 柳丹,张武,陈艳,等.基于卫星遥感的中国西北地区沙尘天气发生机理及传输路径分析[J].中国沙漠,2014,34(6):1605-1616.
[14] 陈勇航,毛小琴,黄建平,等.一次强沙尘输送过程中气溶胶垂直分布特征研究[J].中国环境科学,2009,29(5):449-454.
[15] 段海霞,郭铌,霍文,等.GRAPES-SDM沙尘模式预报与卫星遥感监测结果对比.[J].中国沙漠,2014,34(6):1617-1623.
[16] Winker D M,Pelon J,Coakley J A,et al.The CALIPSO mission:a global 3D view of aerosols and clouds[J].Bluletin of the American Meteorological Society,2010,91(9):1211-1229.
[17] Adams A M,Prospero J M,Zhang C.CALIPSO-dericed three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents[J].Journal of Climate,2012,25(19):6862-6879.
[18] Omar A H,Winker D M,Vaughan M A,et al.The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J].Journal of Atmospheric and Oceanic Technology,2009,26(10):1994-2014.
[19] 茹建波,王天河,李积明,等.东亚沙尘源区晴空和云上沙尘气溶胶特征[J].中国沙漠,2018,38(2):372-383.