防风林带结构是影响防风效能的主要因素。建立不同宽度、不同株行距林带防风效能与林带后距离之间的统计模型,可以为防风林建设提供指导性意见。通过风洞实验,在11 m·s-1风速下,对4种宽度、5种株行距林带的背风面0~10H(H为林带高度)的风速进行测定,采用曲线参数估计法、傅立叶模型、SSF模型(Sum of Sin Functions),构建了不同结构林带防风效能与林带后距离间的统计模型。结果表明:傅立叶模型拟合不同宽度林带的防风效能与林带后距离的关系效果最优,可决系数(R2)均在98%以上;SSF模型拟合不同株行距林带的防风效能与林带后距离的关系效果最优(R2>0.98)。根据构建的统计模型,风速为11 m·s-1左右时,林带宽度8 m(两行一带)的防风林的防风效能存在明显优势;5种株行距的林带中,株行距为8 m×8 m的防风林带本试验条件下防风效果最好。
The structure of windbreak forest belts is the main factor affecting windbreak effect. The main purpose of this paper is to establish statistical models between windbreak effect of forest belts with different widths and spacing and the distance behind the windbreak forest belts so as to provide guidance for the construction of windbreak forests. The wind speeds at 0-10H (H is tree height) on the leeward side of forest belts with 4 kinds of widths and 5 kinds spacing are measured by wind tunnel test when the wind speed is 11 m·s-1. The statistical model between windbreak effect and distance behind forest belts is constructed by using curve parameter estimation method, Fourier model and SSF model (Sum of Sin Functions) under different forest belt structures. The results shows that Fourier model had the best effect on fitting the relationship between the windbreak effect of different width forest belts and the distance behind the forest belts, and the coefficient of determination (R2) was above 98%. SSF model had the best effect on fitting the relationship between the windbreak effect of different spacing forest belts and the distance behind the forest belts, with the lowest coefficient of determination (R2) being 89%. According to the statistical model, when the wind speed is about 11 m·s-1, the windbreak effect of the windbreak forest structure with a forest belt width of 8 m (two rows and one belt) has prominent advantage; among the five forest belts with different row spacing, the windbreak forest belt with a tree spacing of 8 m×8 m is the best structure for wind protection under the test conditions.
[1] 左忠,潘占兵,张安东,等.干旱风沙区农田防护林网空间风速与地表风蚀特征[J].农业工程学报,2018,34(2):135-141.
[2] 周琪智,赵洋,高广磊,等.青藏铁路西宁-格尔木段铁路防护林防风效果风洞模拟试验研究[J].宁夏农林科技,2018,59(5):35-36.
[3] 付亚星,王乐,彭帅,等.河北坝上农田防护林防风效能及类型配置研究——以河北省康保县为例[J].水土保持研究,2014,21(3):279-283.
[4] 徐立帅,穆桂金,孙琳,等.防护林疏透度对近地层大气降尘的影响——以新疆策勒为例[J].中国沙漠,2017,37(1):57-64.
[5] Cornelis W M,Gabriels D.Optimal windbreak design for wind-erosion control[J].Journal of Arid Environments,2005,61(2):315-332.
[6] Bitog J P,Lee I B,Hwang H S,et al.A wind tunnel study on aerodynamic porosity and windbreak drag[J].Forest Science and technology,2011,7(1):8-16.
[7] Liu C C,Zheng Z Q,Cheng H,et al.Airflow around single and multiple plants[J].Agricultural and Forest Meteorology,2018,252:27-38.
[8] Bitog J P,Lee I B,Hwang H S,et al.Numerical simulation study of a tree windbreak[J].Biosystems engineering,2012,111(1):40-48.
[9] 李雪琳,马彦军,马瑞,等.不同带宽的防风固沙林流场结构及防风效能风洞实验[J].中国沙漠,2018,38(5):936-944.
[10] 郑波,刘彤,朱乐奎,等.多层林网与单林带防风效应差异的风洞模拟[J].石河子大学学报(自然科学版),2017,35(2):207-212.
[11] 张莹花,康才周,刘世增,等.沙地云杉(Picea mongolica)农田防护林带不同配置模式的防风效果[J].中国沙漠,2017,37(5):859-866.
[12] 唐玉龙,安志山,张克存,等.不同结构单排林带防风效应的风洞模拟[J].中国沙漠,2012,32(3):647-654.
[13] 刘楠.风沙流中风洞实验的数值模拟[D].兰州:兰州大学,2008.
[14] 杨文斌,王晶莹,董慧龙,等.两行一带式乔木固沙林带风速流场和防风效果风洞试验[J].林业科学,2011,47(2):95-102.
[15] 杜虎林,王涛,肖洪浪,等.塔里木沙漠公路防护林带根灌节水试验研究[J].中国沙漠,2010,30(3):522-527.
[16] 张彩霞,王训明,满多清,等.层次分析法在民勤绿洲农田防护林生态效益评价中的应用[J].中国沙漠,2010,30(3):602-607.
[17] 郭学斌,梁爱军,郭晋平,等.晋北风沙特点、防风林带结构及效益[J].水土保持学报,2011,25(6):44-54.
[18] 杨雨春,赵珊珊,包广道,等.吉林水田防护林防风效能及其影响因子分析[J].西北林学院学报,2015,30(1):132-136.
[19] 王志春,宋丽莉,何秋生,等.风速随高度变化的曲线拟合[J].广东气象,2007(1):13-15.
[20] 洪楠.SPSS for Windows统计产品和服务解决方案教程[M].北京:清华大学出版社,2003:2235-251.
[21] 王志春,宋丽莉,何秋生,等.风速随高度变化的曲线模型分析[J].热带气象学报,2007(6):690-692.
[22] 王冬至,张冬燕,蒋凤玲,等.塞罕坝华北落叶松人工林地位指数模型[J].应用生态学报,2015,26(11):3413-3420.
[23] 牛庆花,彭博,陆贵巧,等.河北省坝上地区牧场防护林的防风效能研究[J].水土保持通报,2018,38(4):114-117.
[24] 高函,吴斌,张宇清,等.行带式配置柠条林防风效益风洞试验研究[J].水土保持学报,2010,24(4):44-47.
[25] Torita H,Satou H.Relationship between shelterbelt structure and mean wind reduction[J].Agricultural and Forest Meteorology,2007,145(3/4):186-194.
[26] Ma R,Wang J,Qu J,et al.Effectiveness of shelterbelt with a non-uniform density distribution[J].Journal of Wind Engineering and Industrial Aerodynamics,2010,98(12):767-771.