蒙古东部野火时空格局及其影响因素
收稿日期: 2020-10-21
修回日期: 2020-12-27
网络出版日期: 2021-03-26
基金资助
科技基础资源调查专项课题(2017FY101301);国家重点研发计划课题(2016YFC0500908);国家自然科学基金项目(31670715)
Spatiotemporal pattern and effecting factors of wildfire in eastern Mongolia
Received date: 2020-10-21
Revised date: 2020-12-27
Online published: 2021-03-26
基于MCD64A1过火迹地产品、土地覆盖、植被指数和气候等数据,采用空间统计分析和相关分析方法研究了2001—2017年蒙古东部野火时空动态及其影响因素。结果表明:(1)4—6月是野火发生最主要的时段,10月野火灾害也较严重,特别集中于年内第107—127、145—189、279—301日3个时段;2001—2017年,蒙古东部野火过火面积年际间波动较大,2003、2007、2011、2012、2015年是野火发生的高峰年。(2)从野火发生的空间格局看,野火灾害主要发生在东方、肯特、苏赫巴托尔、色楞格、中央省;草原火是蒙古东部主要的过火类型。(3)过火面积主要受降水、温度和植被状况影响;3月过火面积主要与3个月累积的干旱状况有关,而6、7月过火面积主要与当月温度相关,9月过火面积主要受当月降水量影响;在季节尺度上,春季过火面积还与前一年秋季植被状况显著相关,冬季过火面积与当季地表温度呈显著正相关。(4)大气环流与蒙古东部的野火发生、蔓延密切相关,4月过火面积主要受3个月累积北极涛动影响,7月过火面积主要受3个月累积太平洋十年涛动影响,9月过火面积主要受火前北大西洋涛动影响,而11月过火面积主要受3个月累积南方涛动和太平洋十年涛动影响。年尺度上的过火面积主要受北大西洋涛动显著影响。
徐书兴 , 吴倩倩 , 乔殿学 , 穆英林 , 张晓 , 刘艳书 , 杨晓晖 , 时忠杰 . 蒙古东部野火时空格局及其影响因素[J]. 中国沙漠, 2021 , 41(2) : 83 -91 . DOI: 10.7522/j.issn.1000-694X.2020.00136
The spatial and temporal dynamics and influencing factors of wildfires in eastern Mongolia from 2001 to 2017 were studied by using the method of spatial statistical and correlation analysis. The results show that: (1) The wildfires mainly occurred from April to June, and the wildfires is also serious in October. Within a year, the wildfires occur mainly in the three periods: 107-127,145-189 and 279-301 of the day of year. From 2001 to 2017, the area of wildfire in eastern Mongolia fluctuated greatly from year to year, and the peak years of wildfire occurred in 2003, 2007, 2011, 2012 and 2015; (2)Wildfire mainly occurs in Dornod, Kent, Sukhbator, Selengge and Central provinces; Grassland wildfires were the main type in eastern Mongolia;(3)The area of wildfire is mainly affected by precipitation, air temperature and vegetation. The burned areas in March is positively correlated with the drought of the three months, and the burned area in June and July is positively correlated with the temperature of the current month, while the burned area in September is negatively correlated with the precipitation of the current month; In addition, the fire area in spring was significantly related to the vegetation in the autumn of the previous year, and the fire area in winter was significantly related to the temperature in the current season; (4)The wildfires in this area were closely affected by the atmospheric circulation in the eastern part of Mongolia. The burned area is negatively related to the average Arctic Oscillation (AO) accumulated in three months in April, and in July, the burned area is positively related to the average North Pacific decadal Oscillation (PDO) accumulated in three months. There was a significant negative correlation between the area of fire in September and the average North Atlantic Oscillation (NAO) accumulated in three months. There was a significant negative correlation between the fire area in November and the accumulated average Southern Oscillation Index (SOI) in three months, and a significant positive correlation between the over fire area and the accumulated average North Pacific decadal Oscillation (PDO) in three months. The burned area on the annual scale is significantly affected by NAO.
1 | Hicke J A,Johnson M C,Hayes J L,et al.Effects of bark beetle-caused tree mortality on wildfire[J].Forest Ecology and Management,2012,271:81-90. |
2 | Bowman D M J S,Balch J K,Artaxo P.Fire in the earth system[J].Science,2009,324(5926):481-484. |
3 | Stevens‐Rumann C S,Kemp K B,Higuera P E,et al.Evidence for declining forest resilience to wildfires under climate change[J].Ecology Letters,2018,21(2):243-252. |
4 | 郑琼,邸雪颖,金森.伊春地区 1980—2010 年森林火灾时空格局及影响因子[J].林业科学,2013,49(4):157-163. |
5 | 苏立娟,何友均,陈绍志.1950—2010年中国森林火灾时空特征及风险分析[J].林业科学,2015,51(1):88-96. |
6 | Yan X,Ohara T,Akimoto H.Bottom-up estimate of biomass burning in mainland China[J].Atmospheric Environment,2006,40(27):5262-5273. |
7 | Chuvieco E,Mouillot F,van d W G R,et al.Historical background and current developments for mapping burned area from satellite earth observation[J].Remote Sensing of Environment,2019,225:45-64. |
8 | 乔泽宇,房磊,张悦楠,等.2001—2017年我国森林火灾时空分布特征[J].应用生态学报,2020,31(1):55-64. |
9 | 覃先林,陈小中,钟祥清,等.我国森林火灾预警监测技术体系发展思考[J].林业资源管理,2015(6):45-48. |
10 | 贾旭,高永,齐呼格金,等.基于MODIS数据的内蒙古野火时空变化特征[J].中国生态农业学报,2017(1):127-135. |
11 | 包刚,包玉龙,包玉海.2001-2012年蒙古高原火行为时空格局变化趋势[C]//风险分析和危机反应中的信息技术:中国灾害防御协会风险分析专业委员会第六届年会论文集.2014. |
12 | 曲熠鹏,郑淑霞,白永飞.蒙古高原草原火行为的时空格局与影响因子[J].应用生态学报,2010,21(4):807-813. |
13 | Ing S K.The social conditions of wildfire in Mongolia[J].International Forest Fire News,1999,21:75-80. |
14 | 丽娜,包玉龙,银山,等.中蒙边境地区草原火时空分布特征分析[J].灾害学,2016,31(3):207-210. |
15 | Milenkovi? M,Yamashkin A A,Duci? V.Forest fires in Portugal:the connection with the Atlantic Multidecadal Oscillation (AMO)[J].Journal of the Geographical Institute “Jovan Cviji?” SASA,2017,67(1):27-35. |
16 | Macias F M,Johnson E A.Climate and wildfires in the North American boreal forest[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2007,363(1501):2315-2327. |
17 | 王冀,江志红,张海东,等.1957-2000年东北地区春季极端气温变化及其与北极涛动的关系[J].气候变化研究进展,2007,3(1):41-45. |
18 | Wang H.Linkage between the Northeast Mongolian precipitation and the northern hemisphere zonal circulation[J].Advances in Atmospheric Sciences,2006,23(5):659-664. |
19 | N’Datchoh E T,Konaré A,Diedhiou A.Effects of climate variability on savannah fire regimes in West Africa[J].Earth System Dynamics,2015,6(1):161-174. |
20 | Yang Q,Ma Z,Fan X,et al.Decadal modulation of precipitation patterns over East China by sea surface temperature anomalies[J].Journal of Climate,2017,30(17):7017-7033. |
/
〈 |
|
〉 |