油蒿(Artemisia ordosica)幼苗生长及生物量分配对降雨量和降雨间隔的响应
收稿日期: 2021-04-05
修回日期: 2021-04-27
网络出版日期: 2021-09-23
基金资助
国家自然科学基金项目(31700639);国家重点研发计划课题(2019YFC0507601)
Responses of seedling growth and biomass allocation of Artemisia ordosica to precipitation and precipitation interval
Received date: 2021-04-05
Revised date: 2021-04-27
Online published: 2021-09-23
在全球气候变化背景下,未来中国北方半干旱地区的降水格局将呈现出降水时间波动增强和极端降水事件增加的趋势,必然对荒漠植被生态系统产生直接影响。油蒿(Artemisia ordosica)是半干旱荒漠生态系统重要的植被建群种,研究其生长及生物量分配在不同降雨格局下的响应特征,可以为探究全球气候变化背景下的荒漠植物的适应性机制提供理论依据。本研究通过人工控雨方法,设置降雨量(增加30%、减少30%、自然降雨)和降雨间隔(5、10、15 d)双因素交叉试验设计,监测油蒿生长发育形态参数、地上生物量、地下生物量对降雨格局变化的响应。结果表明:(1)降雨量的改变对油蒿株高存在显著影响(P<0.05),降雨量减少30%能够显著降低油蒿株高。在降雨间隔时间一致的条件下,降雨量增加30%能够显著促进地上生物量增加。(2)降水间隔对油蒿的株高、冠幅存在显著影响(P<0.05),降雨间隔由5 d延长至15 d,油蒿株高、冠幅生长受到抑制。当总降雨量一定时,降雨间隔延长(15 d)显著增加油蒿幼苗地上、地下生物量和总生物量。(3)降雨量与降雨间隔对油蒿根冠比具有交互效应,降雨量的改变对油蒿根冠比的效应依赖于降雨间隔时间的长短。改变生物量分配模式是油蒿适应水资源环境改变的重要策略,在未来降雨格局变化的趋势下,荒漠生态系统植被建设和管理中更需关注降雨量和降雨间隔时间的双重影响。
何莹莹 , 于明含 , 丁国栋 , 高广磊 , 刘伟 , 周子渊 . 油蒿(Artemisia ordosica)幼苗生长及生物量分配对降雨量和降雨间隔的响应[J]. 中国沙漠, 2021 , 41(5) : 183 -191 . DOI: 10.7522/j.issn.1000-694X.2021.00061
Under the background of global climate change, the precipitation pattern in semi-arid areas in northern China will show the trend of increasing precipitation time fluctuation and extreme precipitation events, which will inevitably have a direct impact on the desert vegetation ecosystem. Artemisia ordosica is an important constructive species in semi-arid desert ecosystems. To study the response characteristics of its growth and biomass allocation under different rainfall patterns can provide a theoretical basis for exploring the adaptation mechanisms of desert plants in the context of global climate change. In this study, using artificial rain control methods, setting up a two-factor cross-experimental design of precipitation (increased by 30%, decreased by 30%, natural precipitation) and precipitation interval (5, 10, 15 d) to monitor the growth and development of A. ordosica response of growth and development morphological parameters and aboveground biomass and underground biomass distribution to the change of precipitation patterns. The results showed that: (1) the change of precipitation has a significant effect on plant height of A. ordosica (P<0.05), and a 30% reduction in precipitation can significantly reduce the plant height of A. ordosica. Under the condition of consistent precipitation intervals, a 30% increase in precipitation can significantly promote the increase of aboveground biomass. (2) the precipitation interval had a significant impact on the plant height and crown width of Artemisia ordosica (P<0.05), and the rain interval was extended from 5 d to 15 d. Plant height and crown width of A. ordosica were inhibited. When the total precipitation was fixed, the aboveground and underground biomass and total biomass of A. ordosica were significantly increased with the extension of precipitation interval (15 d). (3) precipitation and precipitation interval have interactive effects on the root-shoot ratio of A. ordosica, the effect of total precipitation on the root-shoot ratio depends on the length of precipitation interval. Changing the biomass allocation pattern is an important strategy for A. ordosica to adapt to changing of water resources environment. Under the trend of changing rainfall pattern in the future, the dual effects of precipitation and precipitation interval should be paid more attention to in the vegetation construction and management of desert ecosystems.
Key words: precipitation; precipitation interval; biomass; root/shoot ratio
1 | Gong D,Shi P,Wang J.Daily precipitation changes in the semi-arid region over northern China[J].Journal of Arid Environments,2004,59(4):771-784. |
2 | IPCC.Climate Change 2013:The Physical Science Basis[M].Cambridge,UK: Cambridge University Press,2013. |
3 | Yao S,Zhao C.Impact of Different Yearly Rainfall Patterns on Dynamic Changes of Soil Moisture of Fixed Sand Dune in the Horqin Sandy Land[R].IOP Conference Series Earth and Environmental Science,2019:12-20. |
4 | 段桂芳.模拟降水格局变化对红砂种子萌发和幼苗生长的影响[D].兰州:甘肃农业大学,2016. |
5 | 岳永寰,靳瑰丽,宫珂,等.人工模拟降水格局变化对醉马草种子萌发和幼苗生长的影响[J].生态学杂志,2020,39(3):838-846. |
6 | Piper F I,Viegla B,Linares J C,et al.Mediterranean and temperate tree lines are controlled by different environmental drivers[J].Journal of Ecology,2016,104(3):691-702. |
7 | 于明含.典型固沙植物冠层温度和气孔导度特征及其对土壤水分的响应[D].北京:北京林业大学,2016. |
8 | Weltzin J F,Loik M E,Susanne S,et al.Assessing the response of terrestrial ecosystems to potential changes in precipitation[J].Bioence,2003,53(10):941-952. |
9 | 及利,韩姣,王芳,等.干旱胁迫对不同土壤基质下核桃楸幼苗的生理特性的影响[J].植物研究,2019,39(5):722-732. |
10 | Liu Y,Pan Q,Zheng S,et al.Intra-seasonal precipitation amount and pattern differentially affect primary production of two dominant species of Inner Mongolia grassland[J].Acta Oecologica,2012,44:2-10. |
11 | 白蕾,单立山,李毅,等.降雨格局变化对红砂幼苗根系生长和生物量分配的影响[J].西北植物学报,2017,37(1):163-170. |
12 | 赵文智,刘鹄.干旱、半干旱环境降水脉动对生态系统的影响[J].应用生态学报,2011,22(1):243-249. |
13 | 董雪,辛智鸣,鲍芳,等.模拟降雨格局变化下白刺(Nitraria tangutorum)表型变异[J].中国沙漠,2019,39(1):127-134. |
14 | 张金屯.数量生态学[M].北京:科学出版社,2011. |
15 | 温琦,赵文博,张幽静,等.植物干旱胁迫响应的研究进展[J].江苏农业科学,2020,48(12):11-15. |
16 | 单立山,李毅,段桂芳,等.模拟降雨变化对两种荒漠植物幼苗生长及生物量分配的影响[J].干旱区地理,2016,39(6):1267-1274. |
17 | Carrión-Prieto P,Hernández-Navarro S,Martín-Ramos P,et al.Mediterranean shrublands as carbon sinks for climate change mitigation:new root-to-shoot ratios[J].Carbon Management,2017,8(1):67-77. |
18 | Walch J L,Hidayati S N,Dixon K W,et al.Climate change and plant regeneration from seed[J].Global Change Biology,2011,17(6):2145-2161. |
19 | Vile D,Pervent M,Belluau M,et al.Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?[J].Plant Cell & Environment,2012,35:702-718. |
20 | 马赟花,张铜会,刘新平,等.极端降水事件对科尔沁沙地一年生植被的影响[J].中国沙漠,2016,36(1):52-58. |
21 | 周双喜,吴冬秀,张琳,等.降雨格局变化对内蒙古典型草原优势种大针茅幼苗的影响[J].植物生态学报,2010,34(10):1155-1164. |
22 | 何莹莹,于明含,丁国栋,等.基于冠层温度的典型沙生植物土壤水分状况诊断[J].中国水土保持科学,2018,16(4):89-96. |
23 | 姜江.中国季风区及干旱区变化与预估[D].北京:中国科学院大学,2015. |
24 | 王佳佳.夜间增温和改变降雨对三种温带草原类型根系生长和死亡的影响[D].开封:河南大学,2019. |
25 | 杨石岭,董欣欣,肖举乐.末次冰盛期以来东亚季风变化历史中国北方的地质记录[J].中国科学:地球科学,2019,49(8):1169-1181. |
26 | Cheng X,An S,Li B,et al.Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China[J].Plant Ecology,2006,184(1):1-12. |
27 | Bai Y F,Wu J G,Xing Q,et al.Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau[J].Ecology,2008,89:2140-2153. |
28 | 张浩,王新平,张亚峰,等.干旱荒漠区不同生活型植物生长对降雨量变化的响应[J].生态学杂志,2015,34(7):1847-1853. |
29 | 何季,吴波,鲍芳,等.人工模拟增雨对乌兰布和沙漠白刺生物量分配的影响[J].林业科学,2016,52(5):81-91. |
30 | Chou W W,Silver W L,Jackson R D,et al.The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall[J].Global Change Biology,2008,14:1382-1394. |
31 | Loik M E.Sensitivity of water relations and photosynthesis to summer precipitation pulses for Artemisia tridentata and Purshia tridentata[J].Plant Ecology,2007,191:95-108. |
32 | 金成功.增雨和竞争对大豆和反枝苋的生长和氮素吸收的影响[D].哈尔滨:东北农业大学,2017. |
33 | 李文娆,张岁岐,丁圣彦,等.干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J].生态学报,2010,30(19):5140-5150. |
34 | Kir L P,Weisbach A N,Weiner J.Root and shoot competition: a meta-analysis[J].Journal of Ecology,2013,101:1298-1312. |
35 | Yu M H,Ding G D,Gao G L,et al.Double effects of age and environment on resource allocation trade-offs of Salix psammophila in different microtopographic habitats of a sand dune[J].Journal of Plant Growth Regulation,2020,39:544-552. |
36 | Robertson T R,Bell C W,Zak J C,et al.Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland[J].New Phytologist,2009,181(1):230-242. |
37 | 代烁.降雨格局对羊草生物量、雨水利用效率和土壤性质的影响[D].吉林:东北师范大学,2020. |
38 | Golodets C,Sternberg M,Kigel J,et al.From desert to Mediterranean rangelands:will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity?[J].Climatic Change,2013,119(3/4):785-798. |
39 | 张宇航,杨默远,潘兴瑶,等.降雨场次划分方法对降雨控制率的影响分析[J].中国给水排水,2019,35(13):122-127. |
40 | 张嘉嘉.不同时期降雨变化对中国北方半干旱草地生态系统物种丰富度和地上净初级生产力的影响[D].开封:河南大学,2018. |
41 | 丁红,张智猛,戴良香,等.水分胁迫和氮肥对花生根系形态发育及叶片生理活性的影响[J].应用生态学报,2015,26(2):450-456. |
42 | 孙百生,钱金平,赵欢蕊.西北典型荒漠植物红砂生物量及根系形态特征对降水格局的响应[J].生态环境学报,2018,27(11):1993-1999. |
43 | 张荣.人工模拟降雨格局变化对白刺幼苗生长及根系形态特征的影响[D].兰州:甘肃农业大学,2016. |
44 | 张景波,李新乐,吴波,等.长期模拟增雨对荒漠植物形态特征及空间分布格局的影响[J].应用生态学报,2019,30(10):3367-3375. |
45 | 盛军.模拟降雨格局变化与延迟萌发对两种一年生植物表型可塑性的影响[D].长春:东北师范大学,2019. |
46 | 王博,段玉玺,王伟峰,等.油蒿灌丛群落浅层土壤水分对不同降雨格局的响应[J].应用生态学报,2020,31(5):1571-1578. |
47 | 李新乐,吴波,张建平,等.白刺沙包浅层土壤水分动态及其对不同降雨量的响应[J].生态学报,2019,39(15):5701-5708. |
48 | 单立山,李毅,张荣,等.降雨格局变化对白刺幼苗根系形态特征的影响[J].生态学报,2017,37(21):7324-7332. |
49 | 段桂芳,单立山,李毅,等.降水格局变化对红砂幼苗生长的影响[J].生态学报,2016,36(20):6457-6464. |
50 | Heisler-White J L,Knapp A K,Kelly E F.Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland[J].Oecologia,2008,158(1):129-140. |
51 | Fay P A,Blair J M,Smith M D,et al.Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function[J].Biogeosciences,2011,11:3053-3068. |
52 | Knapp A K,Fay P A,Blair J M,et al.Rainfall variability,carbon cycling,and plant species diversity in a mesic grassland[J].Science,2002,298(5601):2202-2205. |
/
〈 |
|
〉 |