沟谷型沙漠泥流堆积体起动过程中的孔压变化特性
收稿日期: 2022-01-25
修回日期: 2022-02-22
网络出版日期: 2022-09-22
基金资助
国家自然科学基金项目(42167043);甘肃省重点研发计划项目(20YF8ND141)
Pore water pressure variation characteristics during the initiation processes of the accumulation body of the gully desert mud flows
Received date: 2022-01-25
Revised date: 2022-02-22
Online published: 2022-09-22
王之君 , 何瑶龄 , 周兆书 . 沟谷型沙漠泥流堆积体起动过程中的孔压变化特性[J]. 中国沙漠, 2022 , 42(5) : 212 -220 . DOI: 10.7522/j.issn.1000-694X.2022.00025
Taking one of the typical aeolian-fluvial interaction dominated watersheds in the Ningxia-Inner Mongolia reach of the Upper Yellow River as the study area, while focusing on the gully desert mud flows characterized as a extreme pattern that the accumulation body blocks the channel, straight channel generalized model tests were carried out on the pore water pressure variation characteristics and the initiation processes of the accumulation body under the upstream runoff infiltration condition. Meanwhile, the fluid-solid coupling model based on the effective stress principle was adopted to simulate the catastrophic micro-mechanism from the perspective of the primary initiation stage of the mud flow disasters. The results indicated that the relationship between pore water pressure and time is a power function with an exponent of 0.5. Under the effects of fluid-solid coupling, the accumulation body experienced a complex nonlinear process of stress field → volume strain → porosity → pore water pressure → seepage field → plastic strain → yield failure. Our results can also provide a new method and approach for early warning and prevention of the gully desert mud flow disasters in terms of pore water pressure monitoring.
1 | 姜程,霍艾迪,朱兴华,等.黄土水力侵蚀-滑坡-泥流灾害链的研究现状[J].自然灾害学报,2019,28(1):38-43. |
2 | 马鹏辉.黄土地质灾害链链生演化特征及机制研究[D].西安:长安大学,2020. |
3 | 王之君,拓万全,王昱,等.黄河上游“十大孔兑”高含沙洪水灾害过程与输沙特性[J].灾害学,2019,34(3):93-96. |
4 | 许炯心.“十大孔兑”侵蚀产沙与风水两相作用及高含沙水流的关系[J].泥沙研究,2013(6):28-37. |
5 | Ta W, Wang H, Jia X.Aeolian process-induced hyper-concentrated flow in a desert watershed[J].Journal of Hydrology,2014,511:220-228. |
6 | Wang Z J, Ta W Q.Hyper-concentrated flow response to aeolian and fluvial interactions from a desert watershed upstream of the Yellow River[J].Catena,2016,147:258-268. |
7 | Harrison Y.Late Pleistocene aeolian and fluvial interactions in the development of the Nizzana dune field, Negev Desert,Israel[J].Sedimentology,2010,45(3):507-518. |
8 | Lancaster N, Tchakerian V.Linkages between fluvial,lacustrine, and aeolian systems in drylands:a contribution to IGCP Project 413[J].Quaternary International,2003,104(1):1-11. |
9 | 宋阳,刘连友,严平.风水复合侵蚀研究述评[J].地理学报,2006(1):77-88. |
10 | Yan P, Li X M, Ma Y F,et al.Morphological characteristics of interactions between deserts and rivers in northern China[J].Aeolian Research,2015,19:225-233. |
11 | Zhang X, Zhan B.A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed[J].Sedimentary Geology,2015,330:132-140. |
12 | 许炯心.黄河内蒙古段支流“十大孔兑”侵蚀产沙的时空变化及其成因[J].中国沙漠,2014,34(6):1641-1649. |
13 | 胡凯衡,韦方强.基于数值模拟的泥石流危险性分区方法[J].自然灾害学报,2005,14(1):10-14. |
14 | 崔鹏,何易平,陈杰.泥石流输沙及其对山区河道的影响[J].山地学报,2006(5):539-549. |
15 | 苟印祥.泥石流动力特性的数值模拟研究[D].重庆:重庆大学,2012. |
16 | Zulfequar A, Umesh K, Singh A K.Incipient motion for gravel particles in clay-silt-gravel cohesive mixtures[J].Journal of Soils and Sediments,2018,18(10):3082-3093. |
17 | Umesh C, Kothyari R K J.Influence of cohesion on the incipient motion condition of sediment mixtures[J].Water Resources Research,2008,44(4):1-15. |
18 | 王之君,拓万全,李仁年,等.粘性泥流沟道内堆积特性的直槽概化模型试验分析[J].自然灾害学报,2015,24(5):83-91. |
19 | 朱崇林,雷孝章,叶飞,等.坡面径流对斜坡散粒体稳定性影响的试验分析[J].工程科学与技术,2020,52(3):133-140. |
20 | 董辉,罗潇.强降雨作用下堆积碎石土渗流规律研究[J].工程地质学报,2015,23(4):616-623. |
21 | 韩培锋,樊晓一,田述军,等.降雨强度与含石量对松散堆积体失稳影响研究[J].工程科学与技术,2019,51(1):112-120. |
22 | 郭瑞,丁宏伟,包骊军,等.黄土高原区地质环境特征及灾害发育类型分析:以甘肃省环县为例[J].陕西理工学院学报(自然科学版),2016,32(5):35-42. |
23 | 贾晓鹏,王海兵,李永山,等.风沙对黄河宁蒙河段的影响研究进展[J].中国沙漠,2021,41(4):152-157. |
24 | Yao Z, Ta W, Jia X,et al.Bank erosion and accretion along the Ningxia-Inner Mongolia reaches of the Yellow River from 1958 to 2008[J].Geomorphology,2011,127(1):99-106. |
25 | 许炯心.风水两相作用对黄河流域高含沙水流的影响[J].中国科学(D辑:地球科学),2005(9):103-110. |
26 | Ta W, Wang H, Jia X.The contribution of aeolian processes to fluvial sediment yield from a desert watershed in the Ordos Plateau,China[J].Hydrological Processes,2015,29(1):80-89. |
27 | 赵暄,谢永生,景民晓,等.生产建设项目弃土堆置体的类型与特征[J].中国水土保持科学,2013,11(1):88-94. |
28 | 王雪松,谢永生,陈曦,等.模拟降雨条件下工程堆积体产流产沙特征研究[J].泥沙研究,2015(4):74-80. |
29 | 费康,彭劼.ABAQUS岩土工程实例讲解[M].北京:人民邮电出版社,2017. |
30 | 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展(A辑),2003(4):419-426. |
31 | 王如宾,夏瑞,徐卫亚,等.滑坡堆积体降雨入渗过程物理模拟试验研究[J].工程科学与技术,2019,51(4):47-54. |
32 | 缪海波,柴少峰,王功辉.强降雨下无黏性土坡破坏的影响因素试验研究[J].岩土工程学报,2021,43(2):300-308. |
33 | 李安润,邓辉,肖宇月,等.降雨条件下某堆积体边坡稳定性分析[J].人民珠江,2019,40(11):56-61. |
34 | 石振明,赵思奕,苏越.降雨作用下堆积层滑坡的模型试验研究[J].水文地质工程地质,2016,43(4):135-140. |
35 | 左自波,张璐璐,王建华.降雨触发不同级配堆积体滑坡模型试验研究[J].岩土工程学报,2015,37(7):1319-1327. |
/
〈 |
|
〉 |