img

官方微信

  • CN 62-1070/P
  • ISSN 1000-694X
  • 双月刊 创刊于1981年
高级检索

额济纳绿洲地表土壤热通量特征及模拟估算

  • 李强 ,
  • 刘思敏 ,
  • 高冠龙 ,
  • 张小由
展开
  • 1.太原师范学院,山西 晋中 030619
    2.国家林业和草原局经济发展研究中心,北京 100714
    3.山西大学,山西 太原 030006
    4.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    5.山西省黄河实验室,山西 太原 030006
高冠龙(E-mail: gaoguanlong@sxu.edu.cn
李强(1983—),男,山西太原人,副教授,研究方向为区域环境评价与可持续发展。E-mail: tysylq@163.com

收稿日期: 2022-01-02

  修回日期: 2022-04-11

  网络出版日期: 2023-01-09

基金资助

中国博士后科学基金项目(2018M643769);山西省高等学校科技创新项目(2020L0028);中央高校基本科研业务费(自然科学类)项目(300102279505)

Variation and simulation of surface soil heat flux in Ejin Oasis

  • Qiang Li ,
  • Simin Liu ,
  • Guanlong Gao ,
  • Xiaoyou Zhang
Expand
  • 1.Taiyuan Normal University,Jinzhong 030619,Shanxi,China
    2.Economics Development Research Center of National Forestry and Grassland Administration,Beijing 100714,China
    3.Shanxi University,Taiyuan 030006,China
    4.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    5.Shanxi Laboratory for Yellow River,Taiyuan 030006,China

Received date: 2022-01-02

  Revised date: 2022-04-11

  Online published: 2023-01-09

摘要

土壤热通量是地表能量平衡的重要分量,研究其变化特征对理解能量平衡过程具有十分重要的意义。利用中国科学院阿拉善荒漠生态水文试验研究站实际观测数据,分析了额济纳绿洲在不同天气条件(晴天和阴天)和时间尺度下地表土壤热通量变化特征,并采用强迫恢复法对地表土壤热通量进行了估算。结果表明:(1)晴天地表土壤热通量的日总量、平均值、最大值和振幅等都明显大于阴天。(2)在观测期内,地表土壤热通量总体呈先升高后降低的趋势,最大值出现在7月中旬,最小值出现在10月初,二者之间的日均值相差超过了900 W·m-2。(3)不论晴天还是阴天,净辐射较地表土壤热通量在早晨和晚间都是先达到零值,且净辐射在正午前后先达到峰值。(4)对地表土壤热通量取绝对值可以看出,无论昼夜,均是晴天大于阴天。(5)一天内地表土壤热通量占净辐射的比例随着时间递减。(6)基于强迫恢复法估算的额济纳绿洲地表土壤热通量与实测值具有较好的一致性,可用于地表土壤热通量模拟。

本文引用格式

李强 , 刘思敏 , 高冠龙 , 张小由 . 额济纳绿洲地表土壤热通量特征及模拟估算[J]. 中国沙漠, 2022 , 42(6) : 176 -184 . DOI: 10.7522/j.issn.1000-694X.2022.00061

Abstract

The soil heat flux is an important component of the surface energy balance equation, thus the observation and calculation methods of soil heat flux are of great significance. Aimed at the typical arid area in China-Ejin oasis, and based on the data collected from Alax Desert Eco-Hydrology Research Station, this paper used the gradient calorimetric method to calculate surface soil heat flux and analyzed its variations in different weather conditions (sunny and cloudy days), results showed that: (1) The total, average, maximum and amplitude values of surface soil heat flux on sunny days were significantly greater than those on cloudy days. (2) During the observation period, the surface soil heat flux generally increased firstly, and then decreased, with the maximum and minimum values appearing in the middle of July and early October, respectively, and the difference between them was more than 900 W·m-2. (3) No matter it is a sunny or cloudy day, the net radiation reaches zero firstly both in the morning and evening, and also reaches peak values around noon firstly. (4) Taking the absolute value of surface soil heat flux, we can see that the values on sunny days were always greater than those on cloudy days regardless of day and night. (5) The ratio of soil heat flux to net radiation in a day decreased with time. (6) The values of surface soil heat flux estimated by the forced-restore method are in good agreement with the measured values, the forced-restore method can be used to simulate the surface soil heat flux in Ejin Oasis.

参考文献

1 张娟,李晓东,李凤霞,等.黄河源头高寒草甸夏季土壤水热特征及相互关系研究[J].草业学报,2012,21(6):306-314.
2 张强,王胜.干旱荒漠区土壤水热特征和地表辐射平衡年变化规律研究[J].自然科学进展,2007,17(2):73-78.
3 张正偲,赵爱国,董治宝.生态系统地表通量测量:多通道波文比观测仪介绍[J].中国沙漠,2006,26(3):473-477.
4 冯璐,仲雷,马耀明,等.基于土壤温湿度观测资料估算藏北高原地区土壤热通量[J].高原气象,2016,35(2):297-308.
5 An K, Wang W, Wang Z,et al.Estimation of ground heat flux from soil temperature over a bare soil[J].Theoretical & Applied Climatology,2017,129:913-922.
6 Heusinkveld B G, Jacobs A, Holtslag A,et al.Surface energy balance closure in an arid region:role of soil heat flux[J].Agricultural & Forest Meteorology,2004,122(1/2):21-37.
7 Kampf S K, Tyler S W, Ortiz C A,et al.Evaporation and land surface energy budget at the salar de atacama,northern Chile[J].Journal of Hydrology,2005,310(1/4):236-252.
8 李亮,张宏,胡波,等.不同土壤类型的热通量变化特征[J].高原气象,2012,31(2):322-328.
9 Sauer T J, Horton R.Soil Heat Flux[M].Madison,USA:Springer,2005.
10 徐安伦,李建,孙绩华,等.青藏高原东南缘大理地区近地层微气象特征及能量交换分析[J].高原气象,2013,32(1):9-22.
11 王超,韦志刚,高晓清,等.夏季敦煌稀疏植被下垫面物质和能量交换的观测研究[J].高原气象,2012,31(3):622-628.
12 徐自为,刘绍民,徐同仁,等.不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J].地球科学进展,2013,28(8):875-889.
13 张芬,刘绍民,徐自为,等.张掖绿洲-荒漠区域近地层微气象与水热交换特征[J].高原气象,2016,35(5):1233-1247.
14 闫人华, 熊黑钢,陈肖飞.天山北麓绿洲-荒漠过渡带芨芨草地地表能量通量研究[J].生态学报,2015,35(5):1350-1358.
15 李万莉,吕世华,傅慎明,等.金塔绿洲的辐射平衡特征和地表能量研究[J].太阳能学报,2009,30(12):1614-1620.
16 文小航,吕世华,尚伦宇,等.Wrf模式对金塔绿洲-戈壁辐射收支的模拟研究[J].太阳能学报,2011,32(3):346-353.
17 聂泽鑫,杨帆,齐斐斐,等.塔克拉玛干沙漠腹地不同天气地表土壤热通量估算对比研究[J].土壤通报,2019 (6):1306-1314.
18 Gavilán P, Berengena J, Allen R G.Measuring versus estimating net radiation and soil heat flux:impact on penman-monteith reference et estimates in semiarid regions[J].Agricultural Water Management,2007,89(3):275-286.
19 陈星,余晔,陈晋北,等.黄土高原半干旱区冬小麦田土壤热通量的计算方法研究[J].高原气象,2014,33(6):1514-1525.
20 Venegas P, Grandon A, Jara J,et al.Hourly estimation of soil heat flux density at the soil surface with three models and two field methods[J].Theoretical & Applied Climatology,2013,112(1/2):45-59.
21 Yang K, Wang J M.A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J].Science in China,2008,51(5):721-729.
22 Choudhury B J, Idso S B, Reginato R J.Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation[J].Agricultural & Forest Meteorology,1987,39(4):283-297.
23 Bhumralkar C M.Numerical experiments on the computation of ground surface temperature in an atmospheric circulation model[J].Journal of Applied Meterology,1974,36:1-62.
24 Gao Z, Fan X, Bian L.An analytical solution to one-dimensional thermal conduction-convection in soil[J].Soil Science,2003,168(2):99-107.
25 Wang L, Gao Z, Horton R.Comparison of six algorithms to determine the soil thermal diffusivity at a site in the loess plateau of China[J].Hydrology & Earth System Sciences Discussions,2009,6(2):51-60.
26 Wang Z H, Bou-Zeid E.A novel approach for the estimation of soil ground heat flux[J].Agricultural and Forest Meteorology,2012,154:214-221.
27 Bastin J F, Mollicone D, Grainger A,et al.The extent of forest in dryland biomes[J].Science,2017:356:635.
28 Zhou Y, Li X, Yang K,et al.Assessing the impacts of an ecological water diversion project on water consumption through high-resolution estimations of actual evapotranspiration in the downstream regions of the Heihe River Basin,China[J].Agricultural & Forest Meteorology,2018,249:210-227.
29 冯起,司建华,席海洋,等.黑河下游生态水需求与生态水量调控[M].北京:科学出版社,2015.
30 肖瑶,赵林,李韧,等.青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J].冰川冻土,2011,33(5):1033-1039.
31 Tripathi V K.Wastewater reuse and watershed management[J].The Chemical Engineer,2014,872:55-55.
32 张艳武,冯起,黄静,等.黑河下游绿洲地表辐射平衡及小气候特征分析[J].冰川冻土,2006,28(2):191-198.
33 张艳武,冯起,黄静,等.额济纳绿洲地表辐射和热量特征研究[J].干旱区地理,2006,29(3):360-366.
34 Stull R B.An Introduction to Boundary Layer Meteorology[M].The Hague,The Netherlands:Kluwer Academic Publishers,1988.
35 唐恬,王磊,文小航.黄河源鄂陵湖地区辐射收支和地表能量平衡特征研究[J].冰川冻土,2013,35(6):1462-1473.
36 陈东旭,黄萧霖,陈留根,等.长江中下游地区稻田不同时间尺度土壤热通量特征分析[J].水土保持研究,2021,28(4):151-158.
37 马小红,冯起.荒漠河岸胡杨林生态系统能量分配及蒸散发[J].生态学报,2020,40(23):312-322.
38 Fuchs M, Hadas A.The heat flux density in a non-homogeneous bare loessial soil[J].Boundary-Layer Meteorology,1972,3(2):191-200.
39 Idso S B, Aase J K, Jackson R D.Net radiation-soil heat flux relations as influenced by soil water content variations[J].Boundary-Layer Meteorology,1975,9(1):113-122.
40 Camuffo D, Bernardi A.An observational study of heat fluxes and their relationships with net radiation[J].Boundary Layer Meteorology,1982,23(3):359-368.
41 Kustas W P, Prueger J H, Hatfield J L,et al.Variability in soil heat flux from a mesquite dune site[J].Agricultural & Forest Meteorology,2000,103(3):249-264.
42 Santanello J A, Friedl M A.Diurnal covariation in soil heat flux and net radiation[J].Journal of Applied Meteorology,2003,42(6):851-862.
43 Moran M S, Kustas W P, Vidal A,et al.Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland[J].Water Resources Research,1994,30(5):1339-1350.
44 Humes K S, Kustas W P, Moran M S.Use of remote sensing and reference site measurements to estimate instantaneous surface energy balance components over a semiarid rangeland watershed[J].Water Resources Research,1994,30(5):1363-1373.
45 Norman J M, Kustas W P, Prueger J H,et al.Surface flux estimation using radiometric temperature:a dual-temperature-difference method to minimize measurement errors[J].Water Resources Research,2000,36(8):2263-2274.
46 Liebethal C, Foken T.Evaluation of six parameterization approaches for the ground heat flux[J].Theoretical & Applied Climatology,2007,88(1/2):43-56.
47 Foken T, Wimmer F, Mauder M,et al.Some aspects of the energy balance closure problem[J].Atmospheric Chemistry and Physics,2006,6(12):4395-4402.
48 Culf A D, Foken T, Gash J.The energy balance closure problem:an overview[J].Ecological Applications,2008,18(6):1351-1367.
文章导航

/