中国西北戈壁区沙尘暴过程中近地层风沙运动特征
收稿日期: 2022-05-25
修回日期: 2022-08-05
网络出版日期: 2023-04-12
基金资助
国家自然科学基金项目(41971014)
Sand transport characteristics above gobi surface during a dust storm in northern China
Received date: 2022-05-25
Revised date: 2022-08-05
Online published: 2023-04-12
沙尘暴对人类生存的自然环境和社会经济健康发展造成严重影响。近70年来,中国西北沙尘暴天气总体减少,但自2021年开始,沙尘暴发生频率和范围明显增加。沙尘暴的发生和发展是气流与地表可蚀性物质的互馈过程,因此,沙尘在源区的起动过程决定了沙尘暴发生发展的整个过程。尽管目前对沙尘的运动过程进行了大量的数值模拟、遥感解译等研究,但野外实测资料缺乏,难以阐明沙尘暴期间的风沙活动强度及沙尘运动的物理机制。利用2021年1月在额济纳旗附近戈壁的野外实测输沙量和PM10等沙尘资料,解释沙尘物质在源区的运动特征,阐明戈壁风沙运动机理,为沙尘源区风沙灾害防治提供理论依据。结果表明:(1)沙尘源区沙尘暴期间风速可大于19.6 m·s-1,远高于同期当地国家气象站数据(10.5 m·s-1)。(2)PM10浓度100 mg·m-3,远高于同期当地国家环境监测站数据。(3)戈壁输沙量可达10 kg·m-1·h-1,最大输沙量位于地表以上0.07 m高度,这一过程导致戈壁沙尘能够远距离运动。(4)1 m高度平均粒径为0.07 mm,意味着戈壁风沙流以极细沙、粉沙和黏粒为主,PM10含量可达8%,粗沙含量可达9%,运动粗沙碰撞破坏戈壁地表,导致更多的沙尘物质进入空气。(5)车辆碾压戈壁地表导致输沙率是原始地表的2倍,PM10浓度增加2.90倍,PM10含量增加1.29倍,说明保护原始戈壁地表不受破坏,是减少戈壁地区风沙灾害的重要手段之一。
张正偲 , 潘凯佳 , 张焱 , 韩兰英 . 中国西北戈壁区沙尘暴过程中近地层风沙运动特征[J]. 中国沙漠, 2023 , 43(2) : 130 -138 . DOI: 10.7522/j.issn.1000-694X.2022.00096
The effect of dust storm on human living and production do not speak for themselves. Dust storm occurrence days decreased in recently 70 years, but it had been obviously increased since 2021, and attracted a lot of attentions. However, all the published papers were based on simulation or dust geochemistry, and almost no field data. We used field measurement of sand transport, PM10 concentration and transported aeolian sediment grain size to explain the dust hazard in the dust sources during a strong dust storm. Our results indicated that: (1) Wind velocity was much larger in the dust sources than national weather station data. (2) PM10 concentration can reach to 100 mg·m-3, and is also larger than national measured data. (3) Sand transport reached to 10 kg·m-1·h-1, and dust can be transported longer distance. (4) The mean grain size of transported aeolian material was 0.07 mm, and coarse sand frequency can reach to 9%, and PM10 frequency can reach to 8%. Coarse sand impacted on erodible land surface and caused more dust come into air and supplemented dust concentration in the sources. (5) Sand transport rate increased about 2 times, PM10 concentration increased 2.90 time, and PM10 frequency increased 1.29 time on disturbed land surface than undisturbed land surface, which means that protected gobi land surface can greatly decreased dust material during dust storm.
Key words: dust storm; PM10; sand transport rate; grain size
1 | 王涛,陈广庭,钱正安,等.中国北方沙尘暴现状及对策[J].中国沙漠,2001,21(4):7-12. |
2 | 王式功,董光荣,陈慧忠,等.沙尘暴研究的进展[J].中国沙漠,2000,20(4):349-356. |
3 | 张春来,宋长青,王振亭,等.土壤风蚀过程研究回顾与展望[J].地球科学进展,2018,33(1):27-41. |
4 | Zhang Z C, Dong Z B, Qian G Q,et al.Gravel-desert surface properties and their influences on the wind-erosion threshold friction velocity in north-west China[J].Boundary-Layer Meteorology,2021,179:117-131. |
5 | Zhang Z C, Bird A, Zhang C X,et al.Not all gravel deserts in northern China are sources of regionally deposited dust[J].Atmospheric Environment,2022,273:118984. |
6 | Chen S Y, Huang J P, Li J X,et al.Comparison of dust emissions,transport,and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011[J].Science China Earth Sciences,2017,60:1228-1355. |
7 | Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].London,UK:Methuen,1941. |
8 | Kok J F, Parteli E J R, Michaels T I,et al.The physics of wind-blown sand and dust[J].Report of Progress Physical,2012,75(10):106901. |
9 | Shao Y P.Physics and Modelling of Wind Erosion[M].Dordrecht,Netherlands:Springer,2008. |
10 | 张正偲,潘凯佳,梁爱民,等.戈壁沙尘释放过程与机理研究进展[J].地球科学进展,2019,34(9):891-900. |
11 | 韩兰英,刘伟平,王鑫.甘肃省2021年度十大天气气候时间[J].干旱气象,2021,40(1):166. |
12 | 段伯隆,刘新伟,郭润霞,等.“3·15”北方强沙尘暴天气成因分析[J].干旱气象,2021,39(4):541-553. |
13 | 史忠林,张信宝,张润川.2021年“3·15”沙尘暴沙尘来源核素示踪研究[J].中国沙漠,2022,42(2):1-5. |
14 | 张璐,范凡,吴昊,等.2021年3月14-16日中国北方地区沙尘暴天气过程诊断及沙尘污染输送分析[J].环境科学学报,2022,42(5):1-13. |
15 | 柳本立,彭婉月,刘树林,等.2021年3月中旬东亚中部沙尘天气地面起尘量及源区贡献率估算[J].中国沙漠,2022,42(1):79-86. |
16 | Filonchyk M.Characteristics of the severe March 2021 Gobi Desert dust storm and its impact on air pollution in China[J].Chemosphere,2022,287(1):132219. |
17 | Liang P, Chen B, Yang X P,et al.Revealing the dust transport processes of the 2021 mega dust storm event in northern China[J].Science Bulletin,2022,67(1):21-24. |
18 | Qian W, Leung J C H, Ren J,et al.Anomaly based synoptic analysis and model prediction of six dust storms moving from Mongolia to northern China in Spring 2021[J].Journal of Geophysical Research:Atmospheres,2022,127(7):A00258. |
19 | 李玲萍,李岩瑛,李晓京,等.河西走廊不同强度冷锋型沙尘暴环流和动力特征[J].中国沙漠,2021,41(5):219-228. |
20 | 杨晓军,张强,叶培龙,等.中国北方2021年3月中旬持续性沙尘天气的特征及其成因[J].中国沙漠,2021,41(3):245-255. |
21 | 韩兰英,张强,郭妮,等.中国西北地区沙尘天气的时空位移特征[J].中国沙漠,2012,32(2):454-457. |
22 | Zhang B L, Tsunekawa A, Tsubo M.Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000-2006[J].Global and Planetary Change,2008,60:487-504. |
23 | Zhang X Y, Arimoto R, An Z S.Dust emission from Chinese desert sources linked to variations in atmospheric circulation[J].Journal of Geophysical Research,1997,102(D23):28041-28047. |
24 | Laurent B, Marticorena B, Bergametti G P,et al.Modeling mineral dust emissions from Chinese and Mongolian deserts[J].Global and Planetary Change,2006,52:121-141. |
25 | Zhang Z C, Dong Z B, Qian G Q,et al.Implications of surface properties for dust emission from gravel deserts (gobis) in the Hexi Corridor[J].Geoderma,2016,268:69-77. |
26 | Zhang Z C, Dong Z B, Qian G Q.An investigation into the processes and volume of dust emissions over gravel and sand deserts in northwestern China[J].Boundary-Layer Meteorology,2017,163:523-535. |
27 | Zhang G, Xiao Y, Xiang M,et al.Structure and morphological characteristics of polygonal salt crust,the West Juyan Lake,China[J].Geoscience Journal,2022,26(3):323-334. |
28 | 陈豫英,陈楠,谭志强,等.“2013.3.9”宁夏强沙尘暴天气的热力动力条件分析[J].干旱区地理,2016,39(2):285-293. |
29 | 秦豪君,杨晓军,马莉,等.2000-2020年中国西北地区区域性沙尘暴特征及成因[J].中国沙漠,2022,42(6):53-64. |
30 | 张静纯.2021年1月扬沙天气与3月强沙尘暴天气过程对比分析[J].农业灾害研究,2021,11(8):57-59. |
31 | Wei J, Li Z Q, Xue W H,et al.The China High PM10 dataset:generation,validation,and spatiotemporal variations from 2015 to 2019 across China[J].Environment International,2021,146:106290. |
32 | Tan L H, Qu J J, Wang T,et al.Field observation evidence for kink points in the vertical kinetic energy flux profiles of wind-blown sand over Gobi and its significance[J].Geophysical Research Letters,2021,48:GL091224. |
33 | Zhang Z C, Han L Y, Pan K J.Sediment transport characteristics above a gobi surface in northwestern China,and implications for aeolian environments[J].Aeolian Research,2021,53:100745. |
34 | 屈建军,黄宁,拓万全,等.戈壁风沙流结构特征及其意义[J].地球科学进展,2005,20(1):19-23. |
35 | Ho T D, Valance A, Dupont P,et al.Aeolian sand transport:length and height distributions of saltation trajectories[J].Aeolian Research,2014,12:65-74. |
36 | Ho T D, Valance A, Dupont P,et al.Scaling law in aeolian sand transport[J].Physical Review Letter,2011,106(9):094501. |
37 | Zhang Z C, Han L Y, Pan K J,et al.Nebkha dune morphology in the gobi deserts of northern China and potential implications for dust emission[J].Sedimentology,2020,67(7):3769-3782. |
/
〈 |
|
〉 |