中国东部典型沙地植被覆盖度对降水变化的响应
收稿日期: 2022-09-14
修回日期: 2022-09-28
网络出版日期: 2023-05-31
基金资助
国家自然科学基金项目(41630747)
Response of vegetation coverage to precipitation change in the typical sandy lands of eastern China
Received date: 2022-09-14
Revised date: 2022-09-28
Online published: 2023-05-31
降水对中国东部沙地植被覆盖度产生重要影响,了解植被覆盖度对降水量变化的响应,对制定植被恢复策略具有重要意义。选择毛乌素沙地和科尔沁沙地,使用Landsat系列数据和MODIS数据得到2000—2020年归一化植被指数(NDVI)数据集,用像元二分法分别计算了年内最大和生长季平均的植被覆盖度。结合地面气象站在1999—2020年观测的逐日降水数据,分析了植被覆盖度对降水变化的响应。结果表明:(1)毛乌素沙地和科尔沁沙地的年内最大和生长季平均植被覆盖度均有增长趋势,其中毛乌素沙地的生长季平均植被覆盖度>30%的面积增加最显著,科尔沁沙地>50%的面积增加最显著。(2)这两个沙地的年降水量和四季降水量都呈增加趋势,且有降水变率大和夏季增幅最大的共同特点。(3)毛乌素沙地的年内最大和生长季平均植被覆盖度都对前一年夏季降水量变化的响应最敏感,而在科尔沁沙地则是对当年夏季降水量变化的响应最敏感。(4)不同植被类型对降水量变化发生响应的滞后时间不同。
卜凡蕊 , 刘颖 , 邹学勇 . 中国东部典型沙地植被覆盖度对降水变化的响应[J]. 中国沙漠, 2023 , 43(3) : 9 -20 . DOI: 10.7522/j.issn.1000-694X.2022.00124
Precipitation has an important impact on vegetation coverage in eastern desert regions of China. Understanding the response of vegetation coverage to precipitation changes is of importance to making strategies for vegetation restoration. Mu Us Sandy Land and Horqin Sandy Land, which are typical sandy lands in eastern China, were selected, the Landsat series data and MODIS data were used to obtain the normalized difference vegetation index (NDVI) data set in 2000-2020, and the pixel dichotomy method was used to compute the maximum vegetation coverage in each year and the average vegetation coverage in growing seasons. Then, the daily precipitation data observed by weather stations from 1999 to 2020 were combined with the data of the vegetation coverage to analyze the response of vegetation coverage to precipitation changes in different seasons. The results showed: (1) Both of the maximum vegetation coverage in a year and the average vegetation coverage in growing seasons appeared an increasing trend in Mu Us Sandy Land and Horqin Sandy Land, the increasing rate of the maximum vegetation coverage was 6.5%/10a and 4.1%/10a, respectively, and the increasing rate of the average vegetation coverage was 6.3%/10a and 3.6%/10a, respectively. Among them, the most significant increase with >30% of the average vegetation coverage in growing seasons was found in Mu Us Sandy Land, and that with >50% of the average vegetation coverage in growing seasons was found in Horqin Sandy Land. (2) The annual precipitation and the seasonal precipitation in the two sandy lands showed an increasing trend, the increasing rate was 50.4 mm/10a and 46.7 mm/10a, respectively. The precipitation was of the common characteristics of large variability and the largest summer increase. (3) Both of the yearly maximum vegetation coverage and the average vegetation coverage in growing seasons in Mu Us Sandy Land were most sensitive to the response of the summer precipitation in previous year, while those in Horqin Sandy Land were most sensitive to the response of the summer precipitation in the same year. (4) Different vegetation types have different lag times in response to precipitation changes.
1 | 杨萍.中国东部沙区全新世砂质古土壤与古气候变化[D].金华:浙江师范大学,2014. |
2 | 高尚玉.京津风沙源治理工程效益[M].北京:科学出版社,2012. |
3 | 卢琦.荒漠生态学[M].北京:中国林业出版社,2019:14-15. |
4 | Ma Z T, Wang W K, Zhang Z Y,et al.Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin,China[J].Hydrogeology Journal,2019,27:2707-2718. |
5 | Zhang Y, Gentine P, Luo X Z,et al.Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2 [J].Nature Communications,2022,13(1):4875. |
6 | 车力木格,刘新平,何玉惠,等.半干旱沙地草本植物群落特征对短期降水变化的响应[J].草业学报,2020,29(4):19-28. |
7 | Yue X F, Zhang T H, Zhao X Y.Effects of rainfall patterns on annual plants in Horqin sandy land,Inner Mongolia of China[J].Journal of Arid Land,2016,8(3):389-398. |
8 | Ren S L, Yi S H, Peichl M,et al.Diverse responses of vegetation phenology to climate change in different grasslands in Inner Mongolia during 2000-2016[J].Remote Sensing,2018,10(1):17-18. |
9 | Duan H C, Wang T, Xue X,et al.Dynamics of aeolian desertification and its driving forces in the Horqin Sandy Land,Northern China[J].Environmental Monitoring and Assessment,2014,186(10):6083-6096. |
10 | Wang X M, Zhang C X, Hasi E,et al.Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China?[J].Journal of Arid Environments,2010,74(1):13-22. |
11 | 周海,赵文智,何志斌.两种荒漠生境条件下泡泡刺水分来源及其对降水的响应[J].应用生态学报,2017,28(7):2083-2092. |
12 | Zhao W Z, Liu B.The response of sap flow in shrubs to rainfall-pulses in the desert region of China[J].Agricultural and Forest Meteorology,2010,150(9):1297-1306. |
13 | Zhang C C, Li X Y, Wang Y,et al.Responses of two desert shrubs to simulated rainfall pulses in an arid environment,northwestern China[J].Plant and Soil,2018,435(1/2):239-255. |
14 | 常学礼,赵爱芬,李胜功.科尔沁沙地固定沙丘植被物种多样性对降水变化的响应[J].植物生态学报,2000,24(2):147-151. |
15 | 赵哈林,张铜会,崔建垣,等.近40 a我国北方农牧交错区气候变化及其与土地沙漠化的关系:以科尔沁沙地为例[J].中国沙漠,2000,20():2-7. |
16 | Loik M E, Breshears D D, Lauenroth W K,et al.A multi-scale perspective of water pulses in dryland ecosystems:climatology and ecohydrology of the western USA[J].Oecologia,2004,141(2):269-281. |
17 | Becker F, Choudhury B J.Relative sensitivity of normalized difference vegetation index (NDVI) and microwave polarization difference index (MPDI) for vegetation and desertification monitoring[J].Remote Sensing of Environment,1988,24(2):297-311. |
18 | 原媛.毛乌素沙地植被覆盖和物候变化对总初级生产力的影响[D].北京:北京林业大学,2021. |
19 | Liang T, He M Z, Li X R.Verification of fractional vegetation coverage and NDVI of desert vegetation via UAVRS technology[J].Remote Sensing,2020,12(11):1742. |
20 | Yang F, Chen H, Niu H H,et al.Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015[J].Journal of Geographical Sciences,2018,28(4):400-414. |
21 | Zhao Y J, Lu X M, Wang Y,et al.How precipitation legacies affect broad-scale patterns of primary productivity:evidence from the Inner Mongolia grassland[J].Agricultural and Forest Meteorology,2022,320:108954. |
22 | Sun Z H, Mao Z G, Yang L Y,et al.Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert,China[J].Ecological Indicators,2021,129(9):108020. |
23 | 武金洲,郑晓,高添,等.三北防护林体系建设工程对科尔沁沙地社会经济影响的定量分析[J].生态学杂志,2020,39(11):3567-3575. |
24 | 朱芳莹.中国北方四大沙地近30年来的沙漠化时空变化及气候影响[D].南京:南京大学,2015. |
25 | 徐驰,姜琦刚,李远华,等.呼伦贝尔地区土地荒漠化动态变化[J].世界地质,2010,29(1):160-167. |
26 | Zhou D J, Zhao X, Hu H,et al.Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia,China[J].Landscape Ecology,2015,30(9):1613-1626. |
27 | 廉泓林,韩雪莹,刘雅莉,等.基于标准化降水蒸散指数(SPEI)的毛乌素沙地1981-2020年干旱特征研究[J].中国沙漠,2022,42(4):71-80. |
28 | 郑策,高万德,陈云飞,等.毛乌素沙地冻融期气态水迁移机理及影响因素[J].水科学进展,2022,33(2):227-239. |
29 | 王姣月,秦树高,张宇清.毛乌素沙地植被水分利用效率的时空格局[J].中国沙漠,2020,40(5):120-129. |
30 | 刘广全,王鸿喆.西北农牧交错带常见植物图谱[M].北京:科学出版社,2012. |
31 | Wang J P, Fang Y, Zou X Y,et al.Diverse responses of vegetation phenology to changes in temperature and precipitation in Northern China[J/OL].Geocarto International,2022,. |
32 | 吕家欣,李秀芬,郑晓,等.近40年科尔沁沙地植被时空变化及其驱动力[J].生态学杂志,2020,39(5):1399-1408. |
33 | 王静茹,马龙,刘廷玺.1951-2012年科尔沁沙地气温、降水变化特征[J].干旱区研究,2016,33(1):49-58. |
34 | 方依.中国北方土壤风蚀区非生长季植被覆盖度估算[D].北京:北京师范大学,2019. |
35 | 穆少杰,李建龙,陈奕兆,等.2001-2010年内蒙古植被覆盖度时空变化特征[J].地理学报,2012,67(9):1255-1268. |
36 | 胡新培,田海静,刘旭升,等.2007-2017年呼伦贝尔沙地植被覆盖度变化及驱动因素研究[J].中南林业调查规划,2019,38(1):50-57. |
37 | 侯东杰,郭柯.典型草原植物养分对生长季不同放牧强度的动态响应[J].草地学报,2021,29(1):141-148. |
38 | Cui L L, Shi J.Evaluation and comparison of growing season metrics in arid and semi-arid areas of northern China under climate change[J].Ecological Indicators,2021,121:107055. |
39 | 朱永华,张生,孙标,等.科尔沁沙地典型区地下水、降水变化特征分析[J].干旱区地理,2017,40(4):718-728. |
40 | Guo J T, Hu Y M.Spatiotemporal variations in satellite-derived vegetation phenological parameters in Northeast China [J].Remote Sensing,2022,14(3):705. |
41 | 胡光印,文青,董治宝,等.沙漠编目技术规范的初步设计[J].中国沙漠,2014,34(1):29-34. |
42 | 土壤侵蚀分类分级标准: [S].2008. |
43 | 朱永华,罗平平,郭倩,等.毛乌素沙地暖湿化特征分析及其对植被变化的影响[J].水土保持学报,2022,36(5):1-14. |
44 | Liu X Y, Lai Q, Yin S,et al.Exploring sandy vegetation sensitivities to water storage in China's arid and semi-arid regions[J].Ecological Indicators,2022,136:108711. |
45 | Zhang M M, Wu X Q.The rebound effects of recent vegetation restoration projects in Mu Us sandy land of China[J].Ecological Indicators,2020,113:106228. |
46 | Wang S N, Li R P, Wu Y J,et al.Vegetation dynamics and their response to hydrothermal conditions in Inner Mongolia,China[J].Global Ecology and Conservation,2022,34:E02034. |
47 | 王静璞.2000年以来中国北方风蚀区植被覆盖度变化研究[D].北京:北京师范大学,2015. |
48 | Lin M, Hou L Z, Qi Z M,et al.Impacts of climate change and human activities on vegetation NDVI in China's Mu Us Sandy Land during 2000-2019[J].Ecological Indicators,2022,142:109164. |
49 | Wu T S, Bai H M, Feng F,et al.Multi‐month time‐lag effects of regional vegetation responses to precipitation in arid and semi‐arid grassland:a case study of Hulunbuir,Inner Mongolia[J].Natural Resource Modeling,2022,35(3):E12342. |
50 | 王旭洋,李玉霖,连杰,等.半干旱典型风沙区植被覆盖度演变与气候变化的关系及其对生态建设的意义[J].中国沙漠,2021,41(1):183-194. |
51 | Fan J Q, Wang L, Qin J X,et al.Evaluating cultivated land stability during the growing season based on precipitation in the Horqin sandy land,China[J].Journal of Environmental Management,2020,276:111269. |
52 | 赵学勇,左小安,赵哈林,等.科尔沁不同类型沙地土壤水分在降水后的空间变异特征[J].干旱区地理,2006(2):275-281. |
53 | Vicente-Serrano S M, Gouveia C, Camarero J J,et al.Response of vegetation to drought time-scales across global land biomes[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(1):52-57. |
54 | Ruiz-Sinoga J D, Martínez-Murillo J F, Gabarrón-Galeote M A,et al.The effects of soil moisture variability on the vegetation pattern in Mediterranean abandoned fields (Southern Spain)[J].Catena,2011,85(1):1-11. |
55 | Tong S Q, Zhang J Q, Ha S,et al.Dynamics of fractional vegetation coverage and its relationship with climate and human activities in Inner Mongolia,China[J].Remote Sensing,2016,8(9):776. |
56 | 孙一梅,田青,吕朋,等.科尔沁沙地沙质草地与固定沙丘植物群落结构对极端干旱的响应[J].中国沙漠,2021,41(1):129-136. |
57 | Lv J J, Wang X S, Zhou Y X,et al.Groundwater-dependent distribution of vegetation in Hailiutu River catchment,a semi-arid region in China[J].Ecohydrology,2013,6(1):142-149. |
/
〈 |
|
〉 |