草原风蚀坑发育对土壤生态化学计量的影响
收稿日期: 2023-05-09
修回日期: 2023-06-13
网络出版日期: 2023-09-27
基金资助
内蒙古自治区重点研发与成果转化计划项目(2022YFDZ0027);国家林业和草原局生态定位站运行项目(2022132213);2023年内蒙古林草资源综合监测评估项目(106017001)
Effects of the development of grassland blowouts on soil ecological stoichiometry
Received date: 2023-05-09
Revised date: 2023-06-13
Online published: 2023-09-27
为了探讨草原风蚀坑发育对土壤碳氮磷含量特征的影响,通过时空替代法分析土壤碳氮磷含量、储量及生态化学计量比的时空分异特征及环境响应。结果表明:(1)风蚀坑发育导致土壤含水率、田间持水量、总孔隙度分别下降57.8%、23.2%、15.4%,而土壤pH值和容重分别上升12.4%和13.7%,砂粒含量增加35.8%,粉粒和黏粒含量分别降低69.4%和79.6%;(2)风蚀坑发育造成土壤有机碳含量和储量分别降低34.9%和20.0%,0~20 cm土壤碳流失量最大,土壤氮含量与储量分别降低14.6%和3.1%,60~80 cm土壤氮流失量最显著,土壤磷含量和储量分别降低3.1%和3.4%,20~40 cm土壤磷流失量最多;(3)风蚀坑发育造成土壤C/N、C/P和N/P分别下降24.2%、34.5%和6.9%,表层0~20 cm土壤化学计量比降低最显著;(4)风蚀坑发育对土壤粒径组成的改变是引起土壤碳氮磷含量变化最主要因子,土壤水分供给能力的降低是次要因素。草原风蚀坑发育会造成土壤碳氮磷养分的大量流失,并导致土壤粗粒化、干旱化及次生盐渍化现象。
李雨薇 , 王博 , 包玉海 , 韩彦隆 , 闫茂林 , 王伟峰 . 草原风蚀坑发育对土壤生态化学计量的影响[J]. 中国沙漠, 2023 , 43(5) : 166 -175 . DOI: 10.7522/j.issn.1000-694X.2023.00098
In order to explore the effects of the development of grassland blowouts on soil carbon, nitrogen and phosphorus characteristics, the spatial pattern of soil carbon, nitrogen and phosphorus content, reserves and ecological stoichiometric ratio in the process of grassland blowouts development was studied by space-time substitution method. The results showed that: (1) Grassland blowouts development caused an average decrease of soil moisture content, field capacity and porosity by 57.8%, 23.2% and 15.4%, respectively, resulting in an increase of soil pH and bulk density by 12.4% and 13.7%, respectively. It also caused the soil sand content to increase by 35.8 %, resulting in the decrease of silt and clay content by 69.4% and 79.6% respectively. (2) The soil organic carbon content and storage decreased by 34.9% and 20.0%, respectively, due to the development of grassland blowouts. The carbon loss in the 0-20 cm soil was significant, and the nitrogen content and storage decreased by 14.6% and 3.1%, respectively. The soil nitrogen loss in the 60-80 cm layer was the largest, and the phosphorus content and storage decreased by 3.1% and 3.4%, respectively, and the loss rate in the 20-40 cm layer was the largest. (3) Grassland blowouts development caused an average decrease of soil C/N, C/P and N/P decreased by 24.2%, 34.5 and 6.9%, respectively, and the loss rate of ecological stoichiometry in the 0-20 cm layer was the largest. (4) The change of soil particle size composition caused by the development of blowouts in grassland was the main factor causing the variation of soil carbon, nitrogen and phosphorus, and the decrease of soil water supply capacity was the secondary factor leading to the soil carbon, nitrogen and phosphorus storage capacity weakened. In summary, the development of grassland blowouts will cause a large loss of soil carbon, nitrogen and phosphorus nutrients, and lead to soil coarsening, drought and secondary salinization.
1 | Zhou L, Wei X, Wang C T,et al.Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation[J].Acta Prataculturae Sinica,2022,31(3):34-46. |
2 | 张德平,王效科,哈斯,等.呼伦贝尔沙质草原风蚀坑研究(1):形态、分类、研究意义[J].中国沙漠,2006,26(6):894-902. |
3 | 闫德仁.浑善达克沙地风蚀坑形态特征及其影响因素[J].地理科学,2016,36(4):637-642. |
4 | 胡日娜,哈斯额尔敦,浩毕斯哈拉图,等.浑善达克沙地东南缘固定沙丘风蚀坑动态变化[J].中国沙漠,2019,39(1):34-43. |
5 | Kimia C A, Ian J W, Patrick A H,et al.Spatial-temporal evolution of aeolian blowout dunes at Cape Cod[J].Geomorphology,2015,236:148-162. |
6 | Smyth T, Jackson D, Cooper A.Three dimensional airflow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds[J].Aeolian Research,2013,10(142):171. |
7 | Zeng Q C, Liu Y, Fang Y,et al.Impact of vegetation restoration on plants and soil C∶N∶P stoichiometry on the Yunwu Mountain Reserve of China[J].Ecological Engineering,2017,109:92-100. |
8 | 赵天赐,安婵,李金升,等.不同退化程度草地土壤碳、氮对人工湖的时空响应[J].草业科学,2019,36(1):61-68. |
9 | 贺佩,李悦,江明兢,等.连续氮添加14年对温带典型草原土壤碳氮组分及物理结构的影响[J].生态学报,2021,41(5):1808-1823. |
10 | 陈云,李玉强,王旭洋,等.中国典型生态脆弱区生态化学计量学研究进展[J].生态学报,2021,41(10):4213-4225. |
11 | 宁志英,李玉霖,杨红玲,等.沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响[J].生态学报,2019,39(10):3537-3546. |
12 | 其曼古丽·帕拉提,刘丹,毛军,等.不同退化程度高寒草地土壤碳氮磷含量及其生态化学计量特征[J].生态学杂志,2023:1-11. |
13 | 段成伟,李希来,柴瑜,等.人工修复下退化高寒草甸碳、氮、磷生态化学计量特征[J].中国草地学报,2022,44(7):23-32. |
14 | 张德平,孙宏伟,王效科,等.呼伦贝尔沙质草原风蚀坑研究(Ⅱ):发育过程[J].中国沙漠,2007,27(1):20-24. |
15 | Smith A, Gares P A, Wasklewicz T,et al.Three years of morphologic changes at a bowl blowout,Cape Cod,USA[J].Geomorphology,2017,295(15):452-466. |
16 | Deng L, Shangguan Z P.Effects of grazing exclusion on carbon sequestration in China's grassland[J].Earth-Science Reviews,2017,173:84-95. |
17 | 张德平,王效科,胡日乐,等.呼伦贝尔沙质草原风蚀坑研究(Ⅲ):微地貌和土层的影响[J].中国沙漠,2007,27(1):25-31. |
18 | Grout H, Tarquis A M, Wiesner M R.Multifractal analysis of particle size distributions in soil[J].Environmental Science & Technology,1998,32(9):1176-1182. |
19 | 袁立敏,杨制国,薛博,等.呼伦贝尔草原风蚀坑土壤水分异质效应研究[J].干旱区研究,2022,39(5):1598-1606. |
20 | Wang Z Q, Zhang Y Z, Yang Y,et al.Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China[J].Ecological Informatics,2016,33:32-44. |
21 | 王博,段玉玺,王伟峰,等.油蒿灌丛群落浅层土壤水分对不同降雨格局的响应[J].应用生态学报,2020,31(5):1571-1578. |
22 | 李雪萍,许世洋,李敏权,等.甘南州不同退化程度高寒草甸植被及土壤特性的演化规律[J].生态学报,2022,42(18):7541-7552. |
23 | 罗旦,陈吉祥,程琳,等.陕北沙化区3种主要植物根际土壤细菌多样性与土壤理化性质相关性分析[J].干旱区资源与环境,2019,33(3):151-157. |
24 | Phillips R P, Bernhardt E S, Schlesinger W H.Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response[J].Tree Physiology,2009,29:1513-1523. |
25 | 赵芳草,陈鸿飞,王一昊,等.盐渍化草地根际土壤理化性质对降水改变和氮添加的响应[J].草地学报,2022,30(9):2430-2437. |
26 | Dubrovina I A, Moshkina E V, Sidorova V A,et al.The impact of land use on soil properties and structure of ecosystem carbon stocks in the middle Taiga Subzone of Karelia[J].Eurasian Soil Science,2021,11:1756-1769. |
27 | 李玉强,赵哈林,赵学勇,等.科尔沁沙地沙漠化过程中土壤碳氮特征分析[J].水土保持学报,2005,19(5):75-78. |
28 | 朱灵,李易,杨婉秋,等.沙化对高寒草地土壤碳、氮、酶活性及细菌多样性的影响[J].水土保持学报,2021,35(3):350-358. |
29 | 李玉强,赵哈林,移小勇,等.沙漠化过程中科尔沁沙地植物-土壤系统碳氮储量动态[J].环境科学,2006,27(4):635-640. |
30 | Wang B, Li Y W, Bao Y H.Grazing alters sandy soil greenhouse gas emissions in a sand-binding area of the Hobq Desert, China[J].Journal of Arid Land,2022,14(5):576-588. |
31 | 曹成有,朱丽辉,蒋德明,等.科尔沁沙地不同人工植物群落对土壤养分和生物活性的影响[J].水土保持学报,2007,21(1):168-171. |
32 | Feng Q, Endo K N, Cheng G D.Soil carbon in desertified land in relation to site characteristics[J].Geoderma,2002,106(1/2):21-43. |
33 | Tian H, Chen G, Chi Z,et al.Pattern and variation of C∶N∶P ratios in China's soils: a synthesis of observational data[J].Biogeochemistry,2010,98(s1-3):139-151. |
34 | Ma R, Hu F, Liu J,et al.Shifts in soil nutrient concentrations and C∶N∶P stoichiometry during long-term natural vegetation restoration[J].Peer J,2020,8(1):e8382. |
35 | 张富荣,柳洋,史常明,等.不同恢复年限刺槐林土壤碳、氮、磷含量及其生态化学计量特征[J].生态环境学报,2021,30(3):485-491. |
36 | 孙小东,宁志英,杨红玲,等.中国北方典型风沙区土壤碳氮磷化学计量特征[J].中国沙漠,2018,38(6):1209-1218. |
/
〈 |
|
〉 |