黑河中游人工固沙植被恢复对爬行类和兽类动物多样性的影响
收稿日期: 2023-10-22
修回日期: 2024-05-22
网络出版日期: 2024-12-06
基金资助
甘肃省拔尖领军人才项目(E339040101);国家自然科学基金项目(42230720)
Effects of restoration of artificial sand-fixing vegetation on the diversity of reptiles and mammals in the middle reaches of the Heihe River Basin
Received date: 2023-10-22
Revised date: 2024-05-22
Online published: 2024-12-06
天然流动沙丘和固定沙丘植被恢复,会影响荒漠无脊椎动物和脊椎动物多样性。以黑河中游张掖绿洲为研究区,利用陷阱收集器和红外触发相机调查流动沙丘、5~10年和20~30年梭梭(Haloxylon ammodendron)林爬行类和兽类动物及节肢动物多样性,确定爬行类和兽类动物多样性及与节肢动物互作关系对人工固沙植被恢复的响应规律。结果表明:流动沙丘转变为人工梭梭林会影响爬行类动物群落结构,20~30年梭梭林爬行类动物捕获数量及物种丰富度显著低于流动沙丘。虫纹麻蜥(Scincella doriae)和荒漠沙蜥(Phrynocephalus przewalskii)在5~10年梭梭林生境捕获数量增加,而在20~30年梭梭林捕获数量则降低;荒漠麻蜥(Eremias przewalskii)在人工梭梭林捕获数量显著低于流动沙丘。流动沙丘和人工梭梭林兽类群落组成也明显不同,流动沙丘转变为人工梭梭林显著提高了兽类的月相对多度指数、物种丰富度和多样性指数。大沙鼠与捕食性兽类(如兔狲(Otocolobus manul)和赤狐(Vulpes vulpes))的活动强度均随着人工梭梭林恢复年限的增加先升后降。流动沙丘转变为梭梭林还会影响节肢动物、爬行类和兽类的互作关系。亚洲野猫(Felis silvestris)的活动强度与大沙鼠(Rhombomys opimus)的活动强度显著负相关,虎鼬(Vormela peregusna)的活动强度与大沙鼠的活动强度显著正相关;兔狲和虎鼬的活动强度与荒漠麻蜥捕获数量负相关;爬行类的捕获数量与蛛形纲捕获数量显著负相关,兔狲和赤狐的活动强度与鞘翅目捕获数量显著正相关。此外,流动沙丘转变为人工梭梭林降低了蛛形纲对鞘翅目和蚁科的捕食强度。总之,流动沙丘转变人工梭梭林提高了大沙鼠、爬行类及节肢动物的数量,虎鼬、兔狲和赤狐等捕食性兽类的活动强度也随之增加并改变了节肢动物、爬行类和兽类互作关系,从而影响了荒漠动物多样性及其生态功能。
刘继亮 , 冯怡琳 , 王永珍 , 潘成臣 , 包天玲 , 任嘉隆 , 赵文智 . 黑河中游人工固沙植被恢复对爬行类和兽类动物多样性的影响[J]. 中国沙漠, 2024 , 44(6) : 167 -177 . DOI: 10.7522/j.issn.1000-694X.2024.00055
Conversion of natural mobile and fixed sandy dune into artificial sand-fixing vegetation changes the vegetation and soil environment, which in turn affects the vertebrates and invertebrate diversity. In this paper, we establish long-term monitoring sites for desert animal diversity in mobile sandy dune (MSD), 5-10-year-old (HAP5-10), and 20-30-year-old Haloxylon ammodendron plantation (HAP5-10 and HAP20-30) located in the Zhangye Oasis of the middle reaches of the Heihe River Basin. Reptiles, mammals and arthropods in the MSD, HAP5-10, and HAP20-30 habitats were observed using pitfall trapping and infrared-triggered cameras, and to determine the patterns of response of reptile and mammal diversity and the interaction with arthropods to the restoration of artificial sand-fixing vegetation. The results showed that conversion of natural mobile sandy dunes into Haloxylon ammodendron plantations changed the assemblage of reptiles, and the abundance and species richness of reptiles in the MSD were higher than those in HAP20-30 habitats. Phrynocephalus przewalskii and Scincella doriae captured increased slightly in HAP5-10 habitats compared to MSD habitats, but decreasing in HAP20-30 habitats. Eremias przewalskii caught in MSD was significantly higher than in HAP5-10 and HAP20-30 habitats. The mammal assemblages also showed significant variations between MSD with HAP5-10 and HAP20-30 habitats. Conversion of mobile sandy dune to H. ammodendron plantations significantly increased the monthly relative abundance index, species richness and diversity index of mammals. The activity intensity of both Rhombomys opimus and predatory mammals (e.g., Otocolobus manul and Vulpes vulpes) increased and then decreased with the number of years of restoration of the H. ammodendron plantations. Conversion of mobile sandy dune to H. ammodendron plantations also affected arthropod, reptile and theropod interactions. The activity intensity of Felis silvestris was significantly negatively correlated with that of R. opimus, and that of Vormela peregusna was significantly positively correlated with that of R. opimus, and activity intensity of O. manul and V. peregusna was negatively correlated with abundance of E. przewalskii. The abundance of reptiles was significantly negatively with the abundance of Arachnida, and the activity intensities of O. manul and V. vulpes was significantly positively correlated with the abundance of Coleoptera. In addition, it was found that the conversion of mobile sandy dunes into H. ammodendron plantations reduced the predation intensity of arachnid arthropods on beetles (Coleoptera) and ants (Formicidae). In conclusion, the transformation of mobile sandy dunes into H. ammodendron plantations had increased the abundance of R. opimus, reptiles and arthropods, and the intensity of predatory animals such as V. peregusna, O. manul and V. vulpes had increased and altered arthropod, reptile and animal interactions, which affects the desert animal diversity and their ecological functions.
1 | 赵文智,庄艳丽.中国干旱区绿洲稳定性研究[J].干旱区研究,2009,25(2):155-162. |
2 | 常学礼,韩艳,孙小艳,等.干旱区绿洲扩展过程中的景观变化分析[J].中国沙漠,2012,32(3):857-862. |
3 | 李新荣,肖洪浪,刘立超,等.腾格里沙漠沙坡头地区固沙植被对生物多样性恢复的长期影响[J].中国沙漠,2005,25(2):31-39. |
4 | Zhao W Z, Chang X L.The effect of hydrologic process changes on NDVI in the desert-oasis ecotone of the Hexi Corridor[J].Science China Earth Sciences,2014,57(12):3107-3117. |
5 | Su Y Z, Zhao W Z, Su P X,et al.Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an arid region:a case study in Hexi Corridor,Northwest China[J].Ecological Engineering,2007,29(2):117-124. |
6 | Zhang G F, Zhao L W, Yang Q Y,et al.Effect of desert shrubs on fine-scale spatial patterns of understory vegetation in a dry-land[J].Plant Ecology,2016,217(9):1141-1155. |
7 | Megías A G, Sánchez-Pi?ero F, Hódar J A.Trophic interactions in an arid ecosystem:From decomposers to top-predators[J].Journal of Arid Environments,2011,75(12):1333-1341. |
8 | Liu R T, Zhu F, Steinberger Y.Effectiveness of afforested shrub plantation on ground-active arthropod communities and trophic structure in desertified regions[J].Catena,2015,125:1-9. |
9 | Li F R, Liu J L, Sun T S,et al.Impact of established shrub shelterbelts around oases on the diversity of ground beetles in arid ecosystems of northwestern China[J].Insect Conservation and Diversity,2016,9(2):135-148. |
10 | Liu J L, Li F R, Sun T S,et al.Interactive effects of vegetation and soil determine the composition and diversity of carabid and tenebrionid functional groups in an arid ecosystem[J].Journal of Arid Environments,2016,128:80-90. |
11 | Ayal Y.Trophic structure and the role of predation in shaping hot desert communities[J].Journal of Arid Environments,2007,68(2):171-187. |
12 | Davies G T O, Kirkpatrick J B, Cameron E Z,et al.Ecosystem engineering by digging mammals:effects on soil fertility and condition in Tasmanian temperate woodland[J].Royal Society Open Science,2019,6(1):180621. |
13 | Byers J E.Using ecosystem engineers to enhance multiple ecosystem processes[J].Functional Ecology,2024,38:22-36. |
14 | 刘继亮,巴义彬,牛瑞雪,等.河西走廊天然固沙植被区地表甲虫多样性及其对沙漠化的指示作用[J].生态学报,2021,41(13):5435-5445. |
15 | 王永珍,林永一,冯怡琳,等.沙障对流动沙丘区地表节肢动物分布及多样性的影响[J].生态学报,2022,42(16):6768-6777. |
16 | Polis G A.Complex trophic interactions in deserts:an empirical critique of food-web theory[J].The American Naturalist,1991,138:123-155. |
17 | Whitford W G.Desertification and animal biodiversity in the desert grasslands of North America[J].Journal of Arid Environments,1997,37(4):709-720. |
18 | Segoli M, Groner E, Ayal Y.The importance of plant cover and predation in shaping a desert community[J].Journal of Arid Environments,2016,135:33-38. |
19 | 王香亭.甘肃脊椎动物志[M].兰州:甘肃科学技术出版社,1991. |
20 | 包新康.河西走廊常见脊椎动物图册[M].兰州 兰州大学出版社,2014. |
21 | 郑乐怡,归鸿.昆虫分类[M].南京:南京师范大学出版社,1999. |
22 | Song D X, Zhu M S, Chen J.The Spiders of China[M].Shijiazhuang:Hebei Science and Technology Publishing House,1999. |
23 | 李建亮,李佳琦,王亮,等.基于红外相机技术分析极旱荒漠有蹄类动物的活动节律[J].兽类学报,2020,40(2):120-128. |
24 | 苏永中,刘婷娜.流动沙地建植人工固沙梭梭林的土壤演变过程[J].土壤学报,2020,57(1):84-91. |
25 | 刘任涛.干旱半干旱区蚂蚁的生态功能综述[J].中国沙漠,2024,44(3):213-221. |
26 | 韦锦云,曾治高,张晓磊,等.栖息地荒漠化对蜥蜴群落组成的影响[J].生态学报,2019,39(5):1680-1687. |
27 | Gibb H, Grossman B F, Dickman C R,et al.Long‐term responses of desert ant assemblages to climate[J].Journal of Animal Ecology,2019,88(10):1549-1563. |
28 | Tobisch C, Rojas-Botero S, Uhler J,et al.Plant species composition and local habitat conditions as primary determinants of terrestrial arthropod assemblages[J].Oecologia,2023,201(3):813-825. |
29 | 刘继亮,赵文智,李锋瑞,等.人工固沙植被恢复对地表节肢动物群落组成及多样性的影响[J].生态学报,2018,38:1357-1365. |
30 | 施丽敏,赵伟,李佳琦,等.荒漠沙蜥食物的两性差异[J].四川动物,2013,32(1):68-72. |
31 | 张晓磊,曾治高,韦锦云,等.栖息地荒漠化对草原沙蜥食性的影响[J].生态学报,2018,38(19):7075-7081. |
32 | Valdez J W.Arthropods as vertebrate predators:a review of global patterns[J].Global Ecology and Biogeography,2020,29(10):1691-1703. |
33 | 赵天飙,张忠兵,李新民,等.大沙鼠对栖息地的选择[J].动物学杂志,2000,35(1):40-43. |
34 | 张三亮,刘荣堂.荒漠梭梭林大沙鼠为害及不同生境类型对其巢域选择的影响[J].草原与草坪,2008,130(5):11-14. |
35 | Liu W, Xu W X, Yang W K,et al.Food habits of the great gerbil (Rhombomys opimus) in the southern Gurbantunggut Desert,Xinjiang,China[J].Pakistan Journal of Zoology,2012,44(4):931-936. |
36 | Alper J.Ecosystem 'engineers' shape habitats for other species[J].Science,1998,280(5367):1195-1196. |
37 | Liu J L, Li F R, Liu C A,et al.Influences of shrub vegetation on distribution and diversity of a ground beetle community in a gobi desert ecosystem[J].Biodiversity and Conservation,2012,21:2601-2619. |
38 | Liu J L, Zhao W Z, Li F R.Effects of shrub presence and shrub species on ground beetle assemblages (Carabidae,Curculionidae and Tenebrionidae) in a sandy desert,northwestern China[J].Journal of Arid Land,2015,7:110-121. |
39 | Zeng Z, Bi J, Li S,et al.Effects of habitat alteration on lizard community and food web structure in a desert steppe ecosystem[J].Biological Conservation,2014,179:86-92. |
40 | Zuliani M, Ghazian N, Owen M,et al.Shrub density effects on the presence of an endangered lizard of the Carrizo Plain National Monument,Californi[J]Ecology and Evolution,2023,13(5):e10128. |
41 | Batchuluun B, Wunderlich J, Schmitt M.Diversity of beetles (Coleoptera) in natural and planted saxaul forests (Haloxylon ammodendron) in the South Gobi Desert,Mongolia[J].ZooKeys,2020,1000:59-70. |
42 | Fan B L, Zhang A P, Yang Y,et al.Long-term effects of xerophytic shrub Haloxylon ammodendron plantations on soil properties and vegetation dynamics in Northwest China[J].PLoS One,2016,11(12):e0168000. |
43 | Yu K L, Wang G H.Long‐term impacts of shrub plantations in a desert-oasis ecotone:accumulation of soil nutrients,salinity,and development of herbaceour layer[J].Land Degradation Development,2018,29(8):2681-2693. |
44 | Lescano M N, Elizalde L, Werenkraut V,et al.Ant and tenebrionid beetle assemblages in arid lands:their associations with vegetation types in the Patagonian steppe[J].Journal of Arid Environments,2017,138:51-57. |
45 | Fischer C, Gerstmeier R, Wagner T C.Seasonal and temporal patterns of rainfall shape arthropod community composition and multi-trophic interactions in an arid environment[J].Scientific Reports,2022,12(1):3742. |
46 | Ball B A, Bergin K, Morrison A.Vegetation influences desert soil arthropods and their response to altered precipitation[J].Journal of Arid Environments,2023,208:104873. |
47 | Medina F M, Nogales M.A review on the impacts of feral cats (Felis silvestris catus) in the Canary Islands:implications for the conservation of its endangered fauna[J].Biodivers Conserv,2009,18:829-846. |
48 | 林宣龙,吴克凡,时磊.准噶尔盆地荒漠区赤狐的食性分析[J].兽类学报,2010,30(3):346-350. |
49 | Baatargal O, Suuri B.Diet of the Pallas's cat (Otocolobus manul) in Mongolian steppe habitat during a population peak of Brandt's voles[J].Journal of Arid Environments,2021,193:104583. |
50 | Burgos T, Salesa J, Fedriani J M,et al.Top-down and bottom-up effects modulate species co-existence in a context of top predator restoration[J].Scientific Reports,2023,13(1):4170. |
51 | Meserve P L, Kelt D A, Milstead W B,et al.Thirteen years of shifting top-down and bottom-up control[J].BioScience,2003,53(7):633-646. |
52 | Letnic M, Story P, Story G,et al.Resource pulses,switching trophic control,and the dynamics of small mammal assemblages in arid Australia[J].Journal of Mammalogy,2011,92(6):1210-1222. |
/
〈 |
|
〉 |