Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (6): 289-299.DOI: 10.7522/j.issn.1000-694X.2025.00057
Haixian Wang1,2(
), Yongyong Zhang1,2(
), Wenrong Kang1,2, Jianhua Xiao1,2, Shumin Wang1,2, Shue Wei1,2, Shaoxiong Wu3
Received:2025-01-20
Revised:2025-03-13
Online:2025-11-20
Published:2025-11-26
Contact:
Yongyong Zhang
CLC Number:
Haixian Wang, Yongyong Zhang, Wenrong Kang, Jianhua Xiao, Shumin Wang, Shue Wei, Shaoxiong Wu. Evaporative fractions and soil moisture thresholds in typical vegetation types of arid and semi-arid regions[J]. Journal of Desert Research, 2025, 45(6): 289-299.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00057
| 序号 | 土地覆盖类型(IGBP) | 定义 |
|---|---|---|
| 1 | 稀疏灌木林(OSH) | 覆盖度10%~60%,高度低于2 m,常绿或落叶的木本植被用地 |
| 2 | 稀树草原(SAV) | 森林覆盖度10%~30%,高度超过2 m,和草本植被或其他林下植被系统组合的混合用地类型 |
| 3 | 有林草地(WSA) | 森林覆盖度30%~60%,高度超过2 m,和草本植被或其他林下植被系统组成的混合用地类型 |
| 4 | 草地(GRA) | 由草本植被类型覆盖,森林和灌木覆盖度小于10% |
Table 1 IGBP land classification system
| 序号 | 土地覆盖类型(IGBP) | 定义 |
|---|---|---|
| 1 | 稀疏灌木林(OSH) | 覆盖度10%~60%,高度低于2 m,常绿或落叶的木本植被用地 |
| 2 | 稀树草原(SAV) | 森林覆盖度10%~30%,高度超过2 m,和草本植被或其他林下植被系统组合的混合用地类型 |
| 3 | 有林草地(WSA) | 森林覆盖度30%~60%,高度超过2 m,和草本植被或其他林下植被系统组成的混合用地类型 |
| 4 | 草地(GRA) | 由草本植被类型覆盖,森林和灌木覆盖度小于10% |
| 序号 | 站点ID | 站点名称 | 纬度 | 经度 | 植被 | 年均降水量/mm | 观测时间 | 干旱指数 |
|---|---|---|---|---|---|---|---|---|
| 1 | US-SRM | Santa Rita Mesquite | 31°49′N | 110°52′W | WSA | 380 | 2004—2014 | 0.18 |
| 2 | AU-RDF | Red Dirt Melon Farm, Northern Territory | 14°33′S | 132°28′E | WSA | — | 2011—2013 | 0.40 |
| 3 | AU-Gin | Gingin | 31°22′S | 115°42′E | WSA | 502 | 2011—2014 | 0.32 |
| 4 | AU-ASM | Alice Springs | 22°16′S | 133°15′E | SAV | 320 | 2010—2014 | 0.15 |
| 5 | AU-Dry | Dry River | 15°15′S | 132°22′E | SAV | 330 | 2008—2014 | 0.16 |
| 6 | AU-DaS | Daly River Savanna | 14°09′S | 131°23′E | SAV | 470 | 2008—2014 | 0.58 |
| 7 | AU-Cpr | Calperum | 34°00′S | 140°35′E | SAV | 390 | 2010—2014 | 0.12 |
| 8 | US-Whs | Walnut Gulch Lucky Hills Shrub | 31°44′N | 110°03′W | OSH | 320 | 2007—2014 | 0.34 |
| 9 | US-SRC | Santa Rita Creosote | 31°54′N | 110°50′W | OSH | 330 | 2008—2014 | 0.48 |
| 10 | CA-SF3 | Saskatchewan - Western Boreal, forest burned in 1998 | 54°05′N | 106°00′W | OSH | 336 | 2001—2006 | 0.12 |
| 11 | US-Wkg | Walnut Gulch Kendall Grasslands | 31°44′N | 109°56′W | GRA | 407 | 2004—2014 | 0.17 |
| 12 | US-Var | Vaira Ranch-Ione | 38°24′N | 120°57′W | GRA | — | 2000—2014 | 0.33 |
| 13 | US-SRG | Santa Rita Grassland | 31°47′N | 110°49′W | GRA | 420 | 2008—2014 | 0.22 |
| 14 | US-AR2 | ARM USDA UNL OSU Woodward Switchgrass 2 | 36°38′N | 99°36′W | GRA | 411 | 2009—2012 | 0.30 |
| 15 | US-AR1 | ARM USDA UNL OSU Woodward Switchgrass 1 | 36°25′N | 99°25′W | GRA | 508 | 2009—2012 | 0.30 |
| 16 | IT-MBo | Monte Bondone | 46°00′N | 11°03′E | GRA | — | 2003—2013 | 0.38 |
| 17 | CN-Sw2 | Siziwang Grazed (SZWG) | 41°47′N | 111°54′E | GRA | 303 | 2010—2012 | 0.15 |
| 18 | CN-Cng | Changling | 44°35′N | 123°30′E | GRA | 400 | 2007—2010 | 0.31 |
| 19 | AU-Ync | Jaxa | 34°59′N | 146°17′E | GRA | 250 | 2012—2014 | 0.23 |
| 20 | AU-TTE | Ti Tree East | 22°17′S | 133°38′E | GRA | 278 | 2012—2014 | 0.09 |
| 21 | AU-Stp | Sturt Plains | 17°09′S | 133°21′E | GRA | 579 | 2008—2014 | 0.23 |
| 22 | AU-Rig | Riggs Creek | 36°39′S | 145°34′E | GRA | 445 | 2011—2014 | 0.37 |
| 23 | AU-Emr | Emerald | 23°51′S | 148°28′E | GRA | 568 | 2011—2013 | 0.28 |
| 24 | AU-DaP | Daly River Pasture | 14°03′S | 131°19′E | GRA | — | 2007—2013 | 0.50 |
Table 2 Details of FLUXNET sites
| 序号 | 站点ID | 站点名称 | 纬度 | 经度 | 植被 | 年均降水量/mm | 观测时间 | 干旱指数 |
|---|---|---|---|---|---|---|---|---|
| 1 | US-SRM | Santa Rita Mesquite | 31°49′N | 110°52′W | WSA | 380 | 2004—2014 | 0.18 |
| 2 | AU-RDF | Red Dirt Melon Farm, Northern Territory | 14°33′S | 132°28′E | WSA | — | 2011—2013 | 0.40 |
| 3 | AU-Gin | Gingin | 31°22′S | 115°42′E | WSA | 502 | 2011—2014 | 0.32 |
| 4 | AU-ASM | Alice Springs | 22°16′S | 133°15′E | SAV | 320 | 2010—2014 | 0.15 |
| 5 | AU-Dry | Dry River | 15°15′S | 132°22′E | SAV | 330 | 2008—2014 | 0.16 |
| 6 | AU-DaS | Daly River Savanna | 14°09′S | 131°23′E | SAV | 470 | 2008—2014 | 0.58 |
| 7 | AU-Cpr | Calperum | 34°00′S | 140°35′E | SAV | 390 | 2010—2014 | 0.12 |
| 8 | US-Whs | Walnut Gulch Lucky Hills Shrub | 31°44′N | 110°03′W | OSH | 320 | 2007—2014 | 0.34 |
| 9 | US-SRC | Santa Rita Creosote | 31°54′N | 110°50′W | OSH | 330 | 2008—2014 | 0.48 |
| 10 | CA-SF3 | Saskatchewan - Western Boreal, forest burned in 1998 | 54°05′N | 106°00′W | OSH | 336 | 2001—2006 | 0.12 |
| 11 | US-Wkg | Walnut Gulch Kendall Grasslands | 31°44′N | 109°56′W | GRA | 407 | 2004—2014 | 0.17 |
| 12 | US-Var | Vaira Ranch-Ione | 38°24′N | 120°57′W | GRA | — | 2000—2014 | 0.33 |
| 13 | US-SRG | Santa Rita Grassland | 31°47′N | 110°49′W | GRA | 420 | 2008—2014 | 0.22 |
| 14 | US-AR2 | ARM USDA UNL OSU Woodward Switchgrass 2 | 36°38′N | 99°36′W | GRA | 411 | 2009—2012 | 0.30 |
| 15 | US-AR1 | ARM USDA UNL OSU Woodward Switchgrass 1 | 36°25′N | 99°25′W | GRA | 508 | 2009—2012 | 0.30 |
| 16 | IT-MBo | Monte Bondone | 46°00′N | 11°03′E | GRA | — | 2003—2013 | 0.38 |
| 17 | CN-Sw2 | Siziwang Grazed (SZWG) | 41°47′N | 111°54′E | GRA | 303 | 2010—2012 | 0.15 |
| 18 | CN-Cng | Changling | 44°35′N | 123°30′E | GRA | 400 | 2007—2010 | 0.31 |
| 19 | AU-Ync | Jaxa | 34°59′N | 146°17′E | GRA | 250 | 2012—2014 | 0.23 |
| 20 | AU-TTE | Ti Tree East | 22°17′S | 133°38′E | GRA | 278 | 2012—2014 | 0.09 |
| 21 | AU-Stp | Sturt Plains | 17°09′S | 133°21′E | GRA | 579 | 2008—2014 | 0.23 |
| 22 | AU-Rig | Riggs Creek | 36°39′S | 145°34′E | GRA | 445 | 2011—2014 | 0.37 |
| 23 | AU-Emr | Emerald | 23°51′S | 148°28′E | GRA | 568 | 2011—2013 | 0.28 |
| 24 | AU-DaP | Daly River Pasture | 14°03′S | 131°19′E | GRA | — | 2007—2013 | 0.50 |
| 植被类型 | 统计指标 | ||||
|---|---|---|---|---|---|
| 平均值 | 标准差 | 变异系数 | 最大值 | 最小值 | |
| 有林草地 | 0.31 | 0.08 | 0.27 | 0.45 | 0.23 |
| 稀树草原 | 0.36 | 0.09 | 0.27 | 0.49 | 0.23 |
| 稀疏灌木林 | 0.25 | 0.09 | 0.37 | 0.43 | 0.17 |
| 草地 | 0.33 | 0.03 | 0.09 | 0.40 | 0.29 |
| 干旱半干旱区典型植被 | 0.31 | 0.08 | 0.26 | 0.49 | 0.17 |
Table 3 Statistics of monthly average evaporative fractions ( EF ) for four typical vegetation types in arid and semi-arid regions
| 植被类型 | 统计指标 | ||||
|---|---|---|---|---|---|
| 平均值 | 标准差 | 变异系数 | 最大值 | 最小值 | |
| 有林草地 | 0.31 | 0.08 | 0.27 | 0.45 | 0.23 |
| 稀树草原 | 0.36 | 0.09 | 0.27 | 0.49 | 0.23 |
| 稀疏灌木林 | 0.25 | 0.09 | 0.37 | 0.43 | 0.17 |
| 草地 | 0.33 | 0.03 | 0.09 | 0.40 | 0.29 |
| 干旱半干旱区典型植被 | 0.31 | 0.08 | 0.26 | 0.49 | 0.17 |
Fig.4 Bar chart of Spearman correlation coefficients between monthly average evaporative fractions (EF) and meteorological-hydrological factors in dryland ecosystems
| 植被类型 | 土壤水分 | 气温 | 短波辐射 | 长波辐射 | 饱和水汽压差 | 降水量 |
|---|---|---|---|---|---|---|
| 有林草地 | 0.716* | -0.237* | -0.502* | 0.059 | -0.554* | 0.670* |
| 稀树草原 | 0.576* | 0.191* | -0.227* | 0.547* | -0.374* | 0.376* |
| 稀疏灌木林 | 0.733* | -0.469* | -0.600* | -0.263* | -0.606* | 0.587* |
| 草地 | 0.779* | -0.357* | -0.438* | -0.073 | -0.595* | 0.606* |
Table 4 Correlation analysis between evaporative fractions ( EF ) and meteorological moisture variables for typical vegetation types in dryland ecosystems
| 植被类型 | 土壤水分 | 气温 | 短波辐射 | 长波辐射 | 饱和水汽压差 | 降水量 |
|---|---|---|---|---|---|---|
| 有林草地 | 0.716* | -0.237* | -0.502* | 0.059 | -0.554* | 0.670* |
| 稀树草原 | 0.576* | 0.191* | -0.227* | 0.547* | -0.374* | 0.376* |
| 稀疏灌木林 | 0.733* | -0.469* | -0.600* | -0.263* | -0.606* | 0.587* |
| 草地 | 0.779* | -0.357* | -0.438* | -0.073 | -0.595* | 0.606* |
| [1] | 刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):118-122. |
| [2] | Fisher J B, Melton F, Middleton E,et al.The future of evapotranspiration:global requirements for ecosystem functioning,carbon and climate feedbacks,agricultural management,and water resources[J].Water Resources Research,2017,53(4):2618-2626. |
| [3] | 王怡宁,朱月灵.蒸渗仪国内外应用现状及研究趋势[J].水文,2018,38(1):81-85. |
| [4] | 陈世苹,游翠海,胡中民,等.涡度相关技术及其在陆地生态系统通量研究中的应用[J].植物生态学报,2020,44(4):291-304. |
| [5] | 陈晗.区域蒸散发的实测及模拟研究[D].重庆:重庆交通大学,2017. |
| [6] | 王建林,温学发,孙晓敏,等.涡动相关系统和小孔径闪烁仪观测的森林显热通量的异同研究[J].地球科学进展,2010,25(11):1217-1227. |
| [7] | Zhang K, Kimball J S, Running S W.A review of remote sensing based actual evapotranspiration estimation[J].WIREs Water,2016,3(6):834-853. |
| [8] | 李菲菲,饶良懿,吕琨珑,等.Priestley-Taylor模型参数修正及在蒸散发估算中的应用[J].浙江农林大学学报,2013,30(5):748-754. |
| [9] | 刘斌,胡继超,赵秀兰,等.应用Penman-Monteith模型估算稻田蒸散的误差分析[J].中国农业气象,2015,36(1):24-32. |
| [10] | 杜加强,舒俭民,刘成程,等.黄河上游参考作物蒸散量变化特征及其对气候变化的响应[J].农业工程学报,2012,28(12):92-100. |
| [11] | 梁丽乔,李丽娟,张丽,等.松嫩平原西部生长季参考作物蒸散发的敏感性分析[J].农业工程学报,2008,24(5):1-5. |
| [12] | 李发鹏,徐宗学,李景玉.基于MODIS数据的黄河三角洲区域蒸散发量时空分布特征[J].农业工程学报,2009,25(2):113-120. |
| [13] | Sun Z, Gebremichael M, Ardö J,et al.Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data[J].Atmospheric Research,2012,112:35-44. |
| [14] | Monteith J.Evaporation and surface temperature[J].Quarterly Journal of the Royal Meteorological Society,1981,107(451):1-27. |
| [15] | 王世婷, 章妮, 陈克龙, 等. 温性荒漠草原生长季光伏电站地表能量交换特征[J]. 中国沙漠, 2024, 44 (6): 249-257. |
| [16] | Ford T W, Wulff C O, Quiring S M.Assessment of observed and model-derived soil moisture-evaporative fraction relationships over the United States Southern Great Plains[J].Journal of Geophysical Research:Atmospheres,2014,119(11):6279-6291. |
| [17] | Findell K L, Gentine P, Lintner B R,et al.Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation[J].Nature Geoscience,2011,4(7):434-439. |
| [18] | Haghighi E, Short Gianotti D J, Akbar R,et al.Soil and atmospheric controls on the land surface energy balance:a generalized framework for distinguishing moisture-and energy-limited evaporation regimes[J].Water Resources Research,2018,54(3):1831-1851. |
| [19] | Bagley J E, Kueppers L M, Billesbach D P,et al.The influence of land cover on surface energy partitioning and evaporative fraction regimes in the US Southern Great Plains[J].Journal of Geophysical Research:Atmospheres,2017,122(11):5793-5807. |
| [20] | Tong B, Guo J, Xu H,et al.Effects of soil moisture,net radiation,and atmospheric vapor pressure deficit on surface evaporation fraction at a semi-arid grass site[J].The Science of the Total Environment,2022,849:157890. |
| [21] | Dirmeyer P A, Zeng F J, Ducharne A,et al.The sensitivity of surface fluxes to soil water content in three land surface schemes[J].Journal of Hydrometeorology,2000,1(2):121-134. |
| [22] | Phillips T J, Klein S A.Land-atmosphere coupling manifested in warm-season observations on the U.S.Southern Great Plains[J].Journal of Geophysical Research:Atmospheres,2014,119(2):509-528. |
| [23] | Yang C, Ma Y, Yuan Y,et al.Terrestrial and atmospheric controls on surface energy partitioning and evaporative fraction regimes over the Tibetan Plateau in the growing season[J].Journal of Geophysical Research:Atmospheres,2021,126(21):e2021JD035011. |
| [24] | Hammerle A, Haslwanter A, Tappeiner U,et al.Leaf area controls on energy partitioning of a temperate mountain grassland[J].Biogeosciences,2008,5(2):421-431. |
| [25] | Seneviratne S I, Corti T, Davin E L,et al.Investigating soil moisture-climate interactions in a changing climate:a review[J].Earth-Science Reviews,2010,99(3/4):125-161. |
| [26] | Fraser E D G, Dougill A J, Hubacek K,et al.Assessing vulnerability to climate change in dryland livelihood systems:conceptual challenges and interdisciplinary solutions[J].Ecological Society,2011,16(3):3. |
| [27] | 药静宇.气候变化背景下干旱区碳通量的特征分析[D].兰州:兰州大学,2021. |
| [28] | 潘兴瑶,夏军,张橹.土壤水分随机模型支持下的土壤水平衡研究进展[J].资源科学,2008,30(3):460-467. |
| [29] | Feldman A F, Short Gianotti D J, Trigo I F,et al.Satellite-based assessment of land surface energy partitioning-soil moisture relationships and effects of confounding variables[J].Water Resources Research,2019,55(12):10657-10677. |
| [30] | Betts A K.Understanding hydrometeorology using global models[J].Bulletin of the American Meteorological Society,2004,85:1673-1688. |
| [31] | Gentine P, Green J K, Guérin M,et al.Coupling between the terrestrial carbon and water cycles:a review[J].Environmental Research Letters,2019,14:083003. |
| [32] | Granier A, Reichstein M, Bréda N,et al.Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year:2003[J].Agricultural and Forest Meteorology,2007,143:123-145. |
| [33] | Groffman P M, Baron J S, Blett T,et al.Ecological thresholds:The key to successful environmental management or an important concept with no practical application?[J].Ecosystems,2006,9(1):1-13. |
| [34] | Zhang L, Sha S, Zhang Q,et al.Investigating the coupling relationship between soil moisture and evaporative fraction over China's transitional climate zone[J].Hydrology,2023,10(12):221. |
| [35] | 侯利萍,何萍,范小杉,等.生态阈值确定方法综述[J].应用生态学报,2021,32(2):711-718. |
| [36] | Fong Y, Huang Y, Gilbert P B,et al.chngpt:Threshold regression model estimation and inference[J].BMC Bioinformatics,2017,18(1):454. |
| [37] | Williams I N, Torn M S.Vegetation controls on surface heat flux partitioning,and land-atmosphere coupling[J].Geophysical Research Letters,2015,42(21):9416-9424. |
| [38] | 袁小环,杨学军,陈超,等.基于蒸渗仪实测的参考作物蒸散发模型北京地区适用性评价[J].农业工程学报,2014,30(13):104-110. |
| [39] | Dong J, Akbar R, Giaotti D J S,et al.Can surface soil moisture information identify evapotranspiration regime transitions?[J].Geophysical Research Letters,2022,49(7):e2021GL097697. |
| [40] | Fu Z, Ciais P, Wigneron J P,et al.Global critical soil moisture thresholds of plant water stress[J].Nature Communications,2024,15(1):4826. |
| [41] | Fu Z, Ciais P, Feldman A F,et al.Critical soil moisture thresholds of plant water stress in terrestrial ecosystems[J].Science Advances,2022,8(44):eabq7827. |
| [42] | Toms J D, Lesperance M L.Piecewise regression:a tool for identifying ecological thresholds[J].Ecology,2003,84:2034-2041. |
| [43] | Akaike H T.A new look at the statistical model identification[J].Automatic Control IEEE Transactions,1974,19(6):716-723. |
| [44] | Pastorello G, Trotta C, Canfora E,et al.The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J].Scientific Data,2020,7:225. |
| [45] | Baldocchi D, Falge E, Gu L H,et al.FLUXNET:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor,and energy flux densities[J].Bulletin of the American Meteorological Society,2001,82(11):2415-2434. |
| [46] | Loveland T, Reed B, Brown J F,et al.Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data[J].International Journal of Remote Sensing,2000,21(6/7):1303-1330. |
| [47] | Reichstein M, Falge E, Baldocchi D,et al.On the separation of net ecosystem exchange into assimilation and ecosystem respiration:review and improved algorithm[J].Global Change Biology,2005,11(9):1424-1439. |
| [48] | Vuichard N, Papale D.Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis[J].Earth System Science Data,2015,7(2):157-171. |
| [49] | Chen L, Dirmeyer P A, Guo Z C,et al.Pairing FLUXNET sites to validate model representations of land-use/land-cover change[J].Hydrology and Earth System Sciences,2018,22(1):111-125. |
| [50] | Ge J, Liu Q, Zan B L,et al.Deforestation intensifies daily temperature variability in the northern extratropics[J].Nature Communications,2022,13(1):5955. |
| [51] | Crago R D.Conservation and variability of the evaporative fraction during the daytime[J].Journal of Hydrology,1996,180:173-194. |
| [52] | Zomer R J, Xu J, Trabucco A.Version 3 of the global aridity index and potential evapotranspiration database[J].Scientific Data,2022,9:409. |
| [53] | Chen L J, Chen H S, Du X G,et al.Analysis of spatiotemporal distribution of evaporation fractions of different vegetation types based on FLUXNET site[J].IEEE Geoscience and Remote Sensing Letters,2024,21:1-5. |
| [54] | Bond W J.What limits trees in C4 grasslands and savannas?[J].Annual Review of Ecology,Evolution,and Systematics,2008,39:641-659. |
| [55] | Fan Y, Miguez-Macho G, Jobbágy E G,et al.Hydrologic regulation of plant rooting depth[J].Proceedings of the National Academy of Sciences,2017,114(40):10572-10577. |
| [56] | Zhou Y, Wigley B J, Case M F,et al.Rooting depth as a key woody functional trait in savannas[J].New Phytologist,2020,227(5):1350-1361. |
| [57] | Rojas-Botero S, Teixeira L H, Prucker P,et al.Root traits of grasslands rapidly respond to climate change,while community biomass mainly depends on functional composition[J].Functional Ecology,2023,37(7):1841-1855. |
| [58] | Buitink J, Swank A M, Van der Ploeg M,et al.Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices[J].Hydrology and Earth System Sciences,2020,24(12):6021-6031. |
| [59] | 徐绍源.干旱半干旱地区土壤水分胁迫条件下的蒸散发估算研究[D].兰州:兰州大学,2022. |
| [60] | 邹慧,高光耀,傅伯杰.干旱半干旱草地生态系统与土壤水分关系研究进展[J].生态学报,2016,36(11):3127-3136. |
| [61] | Chen W, Ciais P, Zhu D,et al.Feedbacks of soil properties on vegetation during the Green Sahara period[J].Quaternary Science Reviews,2020,240:106389. |
| [62] | 李熙萌,冯金朝,周芸芸,等.水分对科尔沁沙地差不嘎蒿气体交换特性的影响[J].中国沙漠,2012,32(3):744-749. |
| [63] | 吴佳.非洲和澳大利亚稀树草原树种幼苗的温室比较研究[D].北京:清华大学,2010. |
| [64] | Van Genuchten M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America Journal,1980,44(5):892-898. |
| [65] | Mualem Y.A new model for predicting the hydraulic conductivity of unsaturated porous media[J].Water Resources Research,1976,12(3):513-522. |
| [66] | Fu Z, Ciais P, Makowski D,et al.Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems[J].Global Change Biology,2021,28(6):2111-2123. |
| [67] | Konings A G, Gentine P.Global variations in ecosystem-scale isohydricity[J].Global Change Biology,2017,23(2):891-905. |
| [68] | McDowell N, Pockman W T, Allen C D,et al.Mechanisms of plant survival and mortality during drought:Why do some plants survive while others succumb to drought?[J].New Phytologist,2008,178(4):719-739. |
| [1] | Shurui Yang, Tian Yang, Lu Zhang, Dinghai Zhang, Haidi Qi. Moisture influencing factors on semi-fixed sand dunes in southeast edge of Tengger Desert [J]. Journal of Desert Research, 2025, 45(5): 328-337. |
| [2] | Weichun Liu, Yulin Li, Li Cheng, Haifu Fang. The impact of protective tillage on wind erosion of farmland in the Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 24-33. |
| [3] | Shuxia Yao, Tonghui Zhang, Chuancheng Zhao. Time series analysis of soil moisture in sandy grassland of Horqin Sandy Land [J]. Journal of Desert Research, 2025, 45(4): 67-74. |
| [4] | Yali Ma, Li Ma, Liping Yang, Siqing Wang, Changming Zhao, Ning Chen. Coexistence patterns of biocrusts and vascular plants in drylands from the perspective of ecohydrology [J]. Journal of Desert Research, 2025, 45(3): 121-130. |
| [5] | Qiang Zuo, Haotian Yang, Yiying Yang, Kai Lin, Yunfei Li, Yanli Wang. The construction mode of desert photovoltaic facilities influences the growth characteristics of sand-fixing herbaceous plants through soil moisture [J]. Journal of Desert Research, 2025, 45(3): 291-301. |
| [6] | Ting Ning, Dinghai Zhang, Youyi Zhao, Jing Jiang. Relationship between soil moisture and topography and vegetation in the Tengger Desert [J]. Journal of Desert Research, 2024, 44(5): 133-142. |
| [7] | Tian Yong, Jinxia Zhang, Lijuan Chen, Haiyang Xi, Binwu Zhang, Kaiyuan Gan. Characteristics of soil water and salt spatial differentiation along the Yellow River section of Ulan Buh Desert and its causes [J]. Journal of Desert Research, 2024, 44(3): 247-258. |
| [8] | Hanyong Ding, Hanqing Kang, Jingjing Lv. Impact of soil moisture products on the simulation results of super sandstorms during March of 2021 in North China [J]. Journal of Desert Research, 2024, 44(2): 172-184. |
| [9] | Zhaoen Han, Wei Cui, Jinrong Li, Guodong Tang, Jun Zhang. Effect of soil moisture content on wind erosion rate of frozen aeolian sand [J]. Journal of Desert Research, 2024, 44(1): 228-234. |
| [10] | Yanxia Pan, Yang Zhao, Zhishan Zhang. The influence of eco-mat laying on sand fixation and soil temperature and humidity [J]. Journal of Desert Research, 2023, 43(5): 186-193. |
| [11] | Shanling Cheng, Haipeng Yu, Yu Ren, Jie Zhou, Hongyu Luo, Chenxi Liu, Yongqi Gong. Research progress on the influence mechanism of climate anomalies in arid and semi-arid regions in China [J]. Journal of Desert Research, 2023, 43(3): 21-35. |
| [12] | Yuxi Wei, Lijuan Chen, Haiyang Xi, Chengqi Zhang, Kaiyuan Gan, Tian Yong, Jinxia Zhang. Spatial differentiation of soil moisture and conductivity in Shiyang River Basin [J]. Journal of Desert Research, 2023, 43(3): 264-273. |
| [13] | Guangyu Hong, Xiaojiang Wang, Tieshan Liu, Hailong, Zhenting Wu, Huercha, Xiaowei Gao, Haifeng Yang, Zhuofan Li, Zihao Li, Siqin, Lejun Wang. Applicability of Hydrus-1D Model in simulating the soil moisture in Hedysarum leave in Mu Us Sandy Land, China [J]. Journal of Desert Research, 2022, 42(6): 233-242. |
| [14] | Lin Li, Hu Liu, Chengpeng Sun, Wenzhi Zhao. Groundwater evapotranspiration estimation based on soil moisture and water table measurements [J]. Journal of Desert Research, 2022, 42(6): 277-287. |
| [15] | Chunyan Zhao, Jie Qin, Xiaohui He, Dongmeng Zhou. Effects of sand burial on typical desert plants [J]. Journal of Desert Research, 2022, 42(5): 63-72. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech