Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2010, Vol. 30 Issue (3): 539-545    DOI:
生物土壤与生态     
Diurnal Change in Chlorophyll Fluorescence Parameters of Desert Plant Reaumuria soongorica and Its Relationship with Environmental Factors
CHONG Pei-fang, LI Yi, SU Shi-ping
College of Forestry , Gansu Agricultural University, Lanzhou 730070, China
Download:  PDF (1893KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The diurnal change in chlorophyll fluorescence parameters of desert plant Reaumuria soongorica (R. soongorica) that inhabit at Jiuzhoutai of Lanzhou(LZJ), Linze of Zhangye(ZYL), Minqin of Wuwei (WWM) in Gansu Province of China, and the influencing microclimate factors were determined by PAM-2100 portable chlorophyll fluorometer and Lcpro+ portable photosynthesis analysis system once every hour from 07:00 to 18:00 of the plants growth season under natural environment. The results showed that minimal fluorescence(Fo), maximal photochemical efficiency of PSⅡ (Fv/Fm), actual photochemistry efficiency(ΦPSⅡ) and non-photochemical quenching coefficient(qN) all exhibited obvious diurnal variation. The diurnal curves of Fv/Fm and ΦPSⅡ follow inverse normal distribution, showing the minimum value at 13:00. In contrast, curves of Fo and qN obey normal distribution with the maximum value at 13:00. Although Fv/Fm of R. soongorica in these three areas all declined at midday, there was not the photoinhibition phenomenon because the values of Fv/Fm all were larger than 0.8. Among the environmental factors, photosynthetically active radiation(PAR), air temperature(Ta), and water condition affected photoinhibition in combination. Influence of PAR was significant on photochemical efficiency of PSⅡ when water condition was better, then relative humidity(RH) became the main factor along with the water condition declining. There are two major photoprotective mechanisms that help R. soongorica to survive the adverse circumstances of extreme soil drought coupling with high temperature, strong solar radiation and low air humidity-thermal energy dissipation through xanthophyll cycle and the reversible inactivation of PSⅡ reaction center.
Key words:  chlorophyll fluorescence      environmental factors      photochemical efficiency of PSⅡ      Reaumuria soongorica      desert plant     
Received:  12 April 2009      Published:  20 May 2010
ZTFLH:  Q945.1  
Articles by authors
CHONG Pei-fang
LI Yi
SU Shi-ping

Cite this article: 

CHONG Pei-fang;LI Yi;SU Shi-ping. Diurnal Change in Chlorophyll Fluorescence Parameters of Desert Plant Reaumuria soongorica and Its Relationship with Environmental Factors. JOURNAL OF DESERT RESEARCH, 2010, 30(3): 539-545.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2010/V30/I3/539

[1]罗青红,李志军,伍维模,等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J].西北植物学报,2006,26(5): 983-988.
[2]刘家琼,邱明新,蒲锦春,等.我国典型超旱生植物——红砂[J].植物学报,1982,24(5):485-488.
[3]马茂华,孔令韶.新疆呼图壁绿洲外缘的琵琶柴生物生态学特性研究[J].植物生态学报,1998,22(3):237-244.
[4]黄培祐,聂湘萍.准噶尔盆地中部琵琶柴群落的生境研究[J].新疆大学学报,1988,5(3):66-71.
[5]陈拓,冯虎元,徐世建,等.荒漠植物叶片同位素组成及其水分利用效率[J].中国沙漠,2002,22(3):288-291.
[6]马剑英,周邦才,夏敦胜,等.荒漠植物红砂叶绿素和脯氨酸累积与环境因子的相关分析[J].西北植物学报,2007,27(4):769-775.
[7]李秀玲,陈健,王刚.西北地区红砂种群ISSR遗传变异的空间自相关分析[J].中国沙漠,2008,28(3):468-472.
[8]马剑英,陈发虎,夏敦胜,等.荒漠植物红砂叶片δ13C值与生理指标的关系[J].应用生态学报,2008,19(5):1166-1171.
[9]薛焱,王迎春.盐生植物长叶红砂泌盐特性的研究[J].中国沙漠,2008,28(3):437-442.
[10]王彦荣,曾彦军,付华,等.过牧及封育对红砂荒漠植被演替的影响[J].中国沙漠,2002,22(4):321-327.
[11]徐莉,王丽,李珊,等.影响新疆阜康荒漠地区红砂光合日变化因素的分析[J].西北大学学报(自然科学版),2005,35(4):421-432.
[12]刘玉冰,赵昕,谭会娟.荒漠植物红砂愈伤组织诱导与增殖研究[J].中国沙漠,2008,28(2):255-257.
[13]贾荣亮,周海燕,谭会娟,等.超旱生植物红砂与珍珠光合生理生态日变化特征初探[J].中国沙漠,2006,26(4):631-636.
[14]刘玉冰,张腾国,李新荣,等.红砂忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积[J].中国科学(C辑:生命科学),2006,36(4):328-333.
[15]Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview[C]//Papageorgiou G C,Govindjee(Eds).Chlorophyll Fluorescence: A signature of Photosynthesis.Dordrecht:Springer,2004:279-319.
[16]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence[J].Biochim.Biophys.Acta,1989,990:87-92.
[17]Mao Z,Jiang H,Wang Y,et al. Water balance of birch and larch leaves and their resistance to short and progressive soil drought[J].Russ J Plant Physiol,2004,51:697-701.
[18]卢从明,张其德,匡廷云.水分胁迫对小麦光系统Ⅱ的影响[J].植物学报,1994,36(2):93-98.
[19]Xu Z C,Li D Q,Zou Q,et al.Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages[J].Acta Photophysiologica Sinica,1999,25(1):29-37.
[20]Odasz-Albrigtsen A M,Tmmervik H,Murphy P.Decreased photosynthetic efficiency in plant species exposed to multiple airborne pollutants along the Russian-Norwegian border[J].Can J Bot,2000,78:1021-1033.
[21]quist G,Wass R. A portable,microprocessor operated instrument for measuring chlorophyll fluorescence kinetics instress physiology[J].Physiol Plant,1988,73:211-217.
[22]Demmig A D,Ams B,AdamsⅢw W.Photoprotection and other responses of plants to high light stress[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626.
[23]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
[24]李鹏民,高辉远,Reto J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,2005,31(6):559-566.
[25]Quist G,Chow W,Anderson J M.Photoinhibtion of photosynthesis represents a mechanism for the long-term regulation of photosystemll[J].Planta,1992,186(6):450-460.
[26]周海燕,李新荣,樊恒文,等.极端条件下几种锦鸡儿属灌木的生理特性[J].中国沙漠,2005,25(2):182-190.
[27]高洁,曹坤芳,王焕校,等.干热河谷主要造林树种光合作用光抑制的防御机制[J].应用与环境生物学报,2004,10(3):286-291.
No Suggested Reading articles found!