Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2010, Vol. 30 Issue (6): 1311-1318    DOI:
生物土壤与生态     
Effects of Dehydration on Photosynthetic Pigment Content and Chloroplast Ultrastructure of Syntrichia caninervis in Biological Soil Crusts
WEI Mei-li, ZHANG Yuan-ming
Key Laboratory of Biogeography and Bioresource, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Download:  PDF (4062KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Syntrichia caninervis is the dominant moss in biological soil crusts in the Gurbantunggut desert. In this paper, the effects of dehydration on photosynthetic pigment content and chloroplast ultrastructure of Syntrichia caninervis are studied. The results show that four phases can be clearly defined concerning the alternation of photosynthetic pigment content and chroloplast ultrastructure in the process of dehydration. (1) Initiation phase: The photosynthetic pigment content increased and there was no significant difference between wet and drought treatments after 2 hours of dehydration (P>0.05), whereas chloroplasts possessed clear longitudinally-distributed thylakoids and lamellar structure. The membrane system of various kind of cell structure remains intact. (2) Rapid increase phase: After 2—6 hours of dehydration, the photosynthetic pigment content increased and reached a maximum value after 6 hours of dehydration (RWC, 26.4%). At the same time, more osmiophilic particles appeared and were distributed more centralized; (3) Steady phase: After 6—10 hours of dehydration, the photosynthetic pigment content slowly began to decrease (P>0.05), and chloroplasts were still remained intact. (4) Slow decline phase: After 10 hours of dehydration, photosynthetic pigment content decreased with much lower water content. The structure of chloroplasts tended to disintegrate after fully dehydration. The results also indicate that the response of photosynthetic pigment content lags far behind that of structural changes, differing from the seed plants that photosynthetic pigment contents decrease during dehydration. This may due to rapid repairing mechanism of internal structure in cell. The photosynthetic pigments can completely recover after rehydration, which indicates the change of photosynthetic pigments of syntrichia caninervis Mitt. is reversible during the alternation of dehydration and rehydration.
Key words:  biological soil crusts      syntrichia caninervis      photosynthetic pigment      chloroplast      dehydration     
Received:  15 October 2009      Published:  20 November 2010
ZTFLH:  Q945.1  
Articles by authors
WEI Mei-li
ZHANG Yuan-ming

Cite this article: 

WEI Mei-li;ZHANG Yuan-ming. Effects of Dehydration on Photosynthetic Pigment Content and Chloroplast Ultrastructure of Syntrichia caninervis in Biological Soil Crusts. JOURNAL OF DESERT RESEARCH, 2010, 30(6): 1311-1318.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2010/V30/I6/1311

[1]张元明,陈晋,王雪芹,等.古尔班通古特沙漠生物结皮的分布特征[J].地理学报,2005,60(1):53-60.
[2]Belnap J,Harper K T,Warren S D.Surface disturbance of cryptobiotic soil crusts:Nitrogenase activity,chlorophyll content and chlorophyll degradation[J].Arid Soil Research and Rehabilitation,1994,8:1-8.
[3]West N E.Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J].Advances in Ecological Research,1990,20:179-223.
[4]Isichei A O.The role of algae and cyanobacteria in arid Lands:A review[J].Arid Soil Research and Rehabilitation,1990,4:1-17.
[5]Williams J D,Dobrowolski J P,West N E.Microbiotic crust influence on unsaturated hydraulic conductivity[J].Arid Soil Research and Rehabilitation,1999,13:145-154.
[6]吴楠,张元明,张静,等.生物结皮恢复过程中土壤生态因子分宜特征[J].中国沙漠,2007,27(3):397-404.
[7]陈荣毅,魏文寿,张元明,等.干旱区生物结皮对种子植物多样性的影响[J].中国沙漠,2008,28(5):868-873.
[8]李新荣,陈应武,贾荣亮.生物土壤结皮:荒漠昆虫食物链的重要构建者[J].中国沙漠,2008,28(2):245-248.
[9]Bewley J D.Physiological aspects of desiccation tolerance[J].Ann.Rev.Plant Physiol,1979(30):195-238.
[10]Saavedr L,Svensson J,Carballo V.A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance[J].Plant J,2006,45:237-249.
[11]Oliver M J,Bewley J D.Desiccation tolerance of plant tissues: A mechanistic overview[J].Horticult Rev,1997,18:171-214.
[12]Proctor M C F. Patterns of desiccation tolerance and recovery in bryophytes[J]. Plant Growth Reg, 2001,25:147-156.
[13]Pressel S,Ligrone R,Duckett J G.Effects of De-and rehydration on food-conducting cells in the moss Polytrichum formosum:A cytological study[J].Annals of Botany,2006,98:67-76.
[14]包维楷,冷俐.相同环境下3种藓类植物光合色素含量的比较[J].植物资源与环境学报,2005,14(3):53-54.
[15]张元明,潘惠霞,潘伯荣.古尔班通古特沙漠不同地貌部位生物结皮的选择性分布[J].水土保持学报,2004,18(4):61-64.
[16]张立运,陈昌笃.论古尔班通古特沙漠植物多样性的一般特点[J].生态学报,2002,22(11):1923-1932.
[17]王雪芹,李丙文,张元明.古尔班通古特沙漠沙垄表面的稳定性与顶部流动带的形成[J].中国沙漠,2003,23(2):126-131.
[18]吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998:32-37.
[19]王虹,范兆田.四种旱生藓类植物的比较结构学观察[J].云南植物研究,2000,22(1):38-40.
[20]胡人亮.苔藓植物学[M].北京:高等教育出版社,1987:160-164.
[21]Scott G A M. Desert Bryophytes[M]//Smith, A J E. Bryophyte Ecology. London: Chapman and Hall, 1982:105-122.
[22]Guy C L.Cold acclimation and freezing stress tolerance:Role of protein metabolism[J].Plant Physiol,1990,41:187.
[23]石田政弦.光合作用器官的细胞生物学[M].黄宗甄译.北京:科学出版社,1986.
[24]Martinez-Abaigar J,Nunez-Olivera E.Sessonal changes in photosynthetic pigment composition of aqutatic bryophytes[J].Journal of Bryology,1994(18):97-113.
[25]Barsig M,Schneider K.Effects of UV-B radiation on fine structure,carbohydrates, and pigm ents in Polytrichum commure[J].Bryologist,1998,101(3):357-365.
[26]邓馨,温小刚.脱水和复水对复苏植物牛耳草离体叶片光合作用的影响[J].植物学报(英文版),2000,42(3):321-323.
[27]Deng X,Hu Z A,Wang H X,et al.A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration[J].Plant Science,2003,165(4):851-861.
[28]卜贵军,刘洪梅,李英,等.草甘膦对大豆超微结构及光合指标影响的研究[J].电子显微学报,2008,27(4):322-330.
[29]Alamillo J M,Bartels D.Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum[J].Plant Science,2001,160(6):1161-1170.
[30]阳文龙,胡志昂,王洪新,等.更苏被子植物的光合作用[J].植物学报(英文版),2003,45(5):505-508.
[31]Proctor M C F,Smirnoff N.Rapid recovery of photosystems on rewetting desiccation-tolerant mosses:Chlorophyll fluorescence and inhibitor experiments[J].Journal of Experimental Botany,2000,51(351):1695-1704.
[32]张元明,曹同,潘伯荣.干旱与半干旱地区苔藓植物生态学研究综述[J].生态学报,2002,22(7):1129-1134.
[33]贺学礼.植物学[M].兴界图书出版社,1998:27-28.
[34]蒋礼学,李彦.三种荒漠灌木根系的构形特征与叶性因子对干旱生境的适应性比较[J].中国沙漠,2008,28(6):1118-1124.
[35]田桂泉,白学良,徐杰,等.固定沙丘生物结皮层藓类植物形态结构及其适应悱研究[J].中国沙漠,2005,25(2):249-254.
[36]Schneider K,Wells B,Schmelzer E,et al.Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst[J].Planta,1993,189:120-131.
No Suggested Reading articles found!