Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2012, Vol. 32 Issue (5): 1275-1282    DOI:
Biology and Soil     
Osmotic Adjustment Mechanism of Cynanchum komarovii under Drought Stress
CHEN Cui-yun1,2, ZHAO Xin1,2, LI Xin-rong1,2
1.Laboratory of Stress Physiology and ecology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2.Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Download:  PDF (3025KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cynanchum komarovii is one of the desert plants with drought resistance. To study its osmotic adjustment mechanism under drought stress, the calluses of Cynanchum Komarovii were treated with PEG-6000 at different concentration (0~25%), and then content of the osmotic adjustment substances (K+, Na+, proline, betaine, soluble sugars and so on) were measured. Results showed that with the rise of PEG-6000 concentration, the contents of proline and soluble sugars increased obviously (P<0.05). Under drought stress, the contents of fructose and sucrose increased at high concentration PEG-6000 treatments, while the content of trehalose increased very obviously at all PEG-6000 treatments, with 31% enhancement at 10% PEG-6000 treatment and 98% at 25% PEG-6000 treatment, respectively. The correlation analysis showed that the coefficient between trehalose content and PEG-6000 concentration was the highest with R2=0.9437 (P<0.01). These results suggest that trehalose is the primary osmotic adjustment substance of Cynanchum komarovii resisting to drought stress.
Key words:  Cynanchum komarovii      osmotic adjustment      trehalose      fructose      sucrose     
Received:  30 January 2012      Published:  20 September 2012
ZTFLH: 

Q945

 
Articles by authors
CHEN Cui-yun
ZHAO Xin
LI Xin-rong

Cite this article: 

CHEN Cui-yun, ZHAO Xin, LI Xin-rong. Osmotic Adjustment Mechanism of Cynanchum komarovii under Drought Stress. JOURNAL OF DESERT RESEARCH, 2012, 32(5): 1275-1282.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2012/V32/I5/1275

[1]李新荣,张志山,王新平,等.干旱区土壤植被系统恢复的生态水文学研究进展[J].中国沙漠,2009,29(5):845-852.

[2]杨丽雯,周海燕,樊恒文,等.沙坡头人工固沙植被生态系统土壤恢复研究进展[J].中国沙漠,2009,29(6):1116-1123.

[3]Wang Q H,Li F G,Zhang X,et al.Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity[J].Plos One,2011,6(2):e16930.

[4]Sun H L,Blanford S,Guo Y Y,et al.Toxicity and influences of the alkaloids from Cynanchum komarovii AL. Iljinski (Asclepiadaceae) on growth and cuticle components of Spodoptera litura Fabricius (Noctuidae) larvae[J].Natural Product Research,2012,26(10):903-912.

[5]张永康,赵德惠,李勇.牛心朴子的研究进展[J].农业科学研究,2007,28(1):52-55.

[6]李玉美.牛心朴子草的研究进展及应用前景[J].内蒙古石油,2008,3:29-31.

[7]Harb A,Krishnan A,Ambavaram M M R,et al.Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth[J].Plant Physiology,2010,154:1254 -1271.

[8]史胜青.梭梭干旱诱导表达基因及其调控研究[D].中国林业科学研究院,2006.

[9]Tran L-S P,Nakashima K,Shinozaki K,et al.Plant gene networks in osmotic stress response:From genes to regulatory networks[J].Methods in Enzymology,2007,428:109-128.

[10]王蕊,孙广玉.干旱对大豆叶片葫芦巴碱含量和渗透调节的影响[J].中国沙漠,2010,30(3):552-555.

[11]Song J,Feng G,Tian C Y,et al.Osmotic adjustment traits of Suaeda physophora,Haloxylon ammdoendron and Haloxylon persicum in field or controlled conditions[J].Plant Science,2006,170:113-119.

[12]任庆成,杨铁钊,刘培玉,等.植物抗旱性研究进展[J].中国农学通报,2009,25(15):76-79.

[13]张海燕.NaCl胁迫对滨藜生长及其根和叶中无机离子含量的影响[J].武汉植物学研究,2001,19(5):409-415.

[14]谭会娟,贾荣亮,刘玉冰,等.NaCl胁迫下红砂愈伤组织中主要离子累积特征的研究[J].中国沙漠,2010,30(6):1305-1310.

[15]董伊晨,刘悦秋.土壤水分对异株荨麻(Urtica dioica)保护酶和渗透调节物质的影响及其与叶片光合和生物量的相关性[J].生态学报,2009,29(6):2845-2851.

[16]杜金伟,崔世茂,金丽萍,等.水分胁迫对山杏渗透调节物质积累及保护酶活性的影响[J].内蒙古农业大学学报,2009,30(2):88-93.

[17]刘瑞冬,王有年,王丽雪,等.外源甜菜碱对仁用杏抗旱生理指标的影响[J].内蒙古农业大学学报,2004,2:69-72.

[18]韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,23(1):23-27.

[19]吴银明,王平,刘洪升,等.NaCl分根胁迫对羊草幼苗生长及其生理生化特性的影响[J].西北植物学报,2007,27(9):1807-1813.

[20]朱军涛,李向义,张希明,等.4种荒漠植物的抗氧化系统和渗透调节的季节变化[J].中国沙漠,2011,31(6):1467-1471.

[21]米海莉,许兴,李树华,等.干旱胁迫下牛心朴子幼苗的抗旱生理反应和适应性调节机理[J].干旱地区农业研究,2002,20(4):11-16.

[22]李树华,许兴,米海莉,等.水分胁迫对牛心朴子植株生长及渗透调节物质积累的影响[J].西北植物学报,2003,23(4):592-596.

[23]周海燕,李新荣,樊恒文,等.极端条件下几种锦鸡儿属灌木的生理特性[J].中国沙漠,2005,25(2):182-190.

[24]张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯胺酸的含量的方法[J].植物生理学通讯,1990,4:62-65.

[25]杨秀英,王书林.葸酮-硫酸比色法测定枇杷叶中可溶性多糖的含量[J].亚太传统医药,2008,4(8):26-27.

[26]张自萍,郭荣,廖国玲,等.枸杞甜菜碱含量测定方法的比较研究[J].西北农业学报,2007,16(6):292-295.

[27]Zhao L,Zhang F,Guo J,et al.Nitric oxide functions as a signa in salt resistance in the calluses from two ecotypes of reed[J].Plant Physiology,2004,134:849-857.

[28]孙萍,段喜华.干旱胁迫对长春花光合特性及可溶性糖的影响[J].东北林业大学学报,2010,38(8):54-56.

[29]张美云,钱吉,郑师章.渗透胁迫下野生大豆游离脯氮酸和可溶性糖的变化[J].复旦学报,2002,40(5):558-561.

[30]王蕊,李新国,李绍鹏,等.干旱胁迫下2种香蕉幼苗叶片和根的主要渗透调节物质的变化[J].基因组学与应用生物学,2010,29( 3):518-522.

[31]杨洪兵,韩振海,许雪峰.NaCl和等渗PEG对苹果属植物可溶性糖含量的影响[J].莱阳农学院学报,2005,22(2):105-107.

[32]李书华,李仲芳,陈封政,等.孑遗植物可溶性糖的种类及含量[J].湖北农业科学,2009,48(6):1477-1478.

[33]赵昕,吴雨霞,赵敏桂,等.NaCl胁迫下盐芥和拟南芥渗透调节作用响应[J].兰州大学学报,2006,42:117-123.

[34]唐建平,王正鹏,张树珍,等.高等植物果聚糖分类和功能的研究进展[J].海南大学学报(自然科学版),2009,27(3):308-312.

[35]郭蓓,胡磊,何欣,等.海藻糖-6-磷酸合成酶转基因烟草提高耐盐性的研究[J].植物学通报,2008,25(1):41-49.

[36]Vandesteene L,Ramon M,LeRoy K,et al.A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis[J].Molecular Plant,2010,3:406-419.

[37]杜丽璞,徐惠君,叶兴国,等.小麦转TPS基因植株的获得及其初步功能鉴定[J].麦类作物学报,2007,27(3):369-373.

[38]贾炜珑,胡鸢雷,张彦芹,等.海藻糖合酶基因转化黑麦草及耐旱性研究[J].分子植物育种,2007,5(1):27-31.
No Suggested Reading articles found!