Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2012, Vol. 32 Issue (6): 1542-1550    DOI:
Desert and Desertification     
A Computational Study of Wind-break Performance of Ventilated Wind-break Wall in Different Locations on the Highway
ZENG Qiu-lan1, LI Zhen-shan1,2, LU Fu-an3, WANG Yi-lin2
1.School of Environment and Energy, Peking University, Shenzhen 518055, Guangdong,China;
2.College of Environmental Science and Engineering, Peking University, Beijing 100871, China;
3.School of Energy and Power Engineering, Xian Jiaotong University, Xi'an 710049, China
Download:  PDF (5580KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A CFD software FLUENT is used to perform the three-dimension steady numerical simulations of the aerodynamic properties of a car traveling on highway under cross-wind conditions. With the change of yaw angle β, the variation characteristics of the coefficients of aerodynamic forces and rollover moment acting on the car across the highway with a ventilated wind-break wall set in different locations have been studied. To compare with the wind-break performances of ventilated wind-break wall, the aerodynamic characteristics of the flow around the car without wind-break wall also have been calculated. Results show that the wind forces acting on the car reduce greatly with ventilated wind-break wall on the windward side of the highway. Coefficients of aerodynamic forces and rollover moment differ with regard to different locations of the ventilated wind-break wall. To achieve the minimum rollover moment coefficient, it is reasonable to build the ventilated wind-break wall 2.1 m away from the road shoulder when the car speed is held constant at 120 km·h-1 and the yaw angle is 31.0° or 36.9°(cross-wind at a speed of 20 m·s-1 or 25 m·s-1). In turn, it will be 2.4 m away when the yaw angle changes to 42.0° or 46.4°(cross-wind at a speed of 30 m·s-1 or 35 m·s-1).

Key words:  numerical simulation      ventilated wind-break wall      wind-break performances      aerodynamic properties of the vehicle      highway     
Received:  25 June 2012      Published:  17 July 2012
ZTFLH:  X169  

Cite this article: 

ZENG Qiu-lan1, LI Zhen-shan1,2, LU Fu-an3, WANG Yi-lin2. A Computational Study of Wind-break Performance of Ventilated Wind-break Wall in Different Locations on the Highway. JOURNAL OF DESERT RESEARCH, 2012, 32(6): 1542-1550.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2012/V32/I6/1542

[1]陈飞捷,马淑红,马韫娟,等.连霍高速公路哈密-吐鲁番区间防风技术研究[J].交通标准化,2011,11:105-109.

[2]高注,王蜀东,尹永顺.挡风墙高度的研究[J].中国铁道科学,1990,11(1):14-23.

[3]Chen S R,Cai C S.Accident assessment of vehicles on long-span bridges in windy environments[J].Wind Engineering and Industrial Aerodynamics,2004,92(12):991-1024.

[4]Sigbjornsson R,Snaebjornsson J T.Probabilistic assessment of wind related accidents of road vehicles:A reliability approach[J].Wind Engineering and Industry Aerodynamics,1998,74-76:1079-1090.

[5]Baker C J,Reynolds S.Wind-induced accidents of road vehicles[J].Accident Analysis and Prevention,1992,24(6):559-575.

[6]高广军,段丽丽.单线路堤上挡风墙高度研究[J].中南大学学报(自然科学版),2011,42(1):253-259.

[7]王厚雄,高注,王蜀东,等.挡风墙高度的研究[J].中国铁道科学,1990,11(1):14-23

[8]姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响[J].中国铁道科学院,2006,27(2):66-70.

[9]庞巧东,程建军,蒋富强,等.戈壁铁路挡风墙背风侧流场特征与挡风功效研究[J].铁道标准设计,2011,02:1-4.

[10]罗万银,董治宝,钱广强,等.栅栏绕流减速效应风洞实验模拟[J].中国沙漠,2010,30(1):1-7.

[11]罗万银,董治宝,钱广强,等.直立阻沙栅栏流场特征的风洞模拟实验[J].中国沙漠,2009,29(2):200-205.

[12]郑晓静,马高生,黄宁.铁路挡风墙挡风效果和积沙情况分析[J].中国沙漠,2010,31(1):21-27.

[13]牛清河,屈建军,张克存,等.青藏铁路典型路段风沙灾害现状与机械防沙效益估算[J].中国沙漠,2009,29(4):596-603.

[14]张克存,屈建军,牛清河.青藏铁路沿线阻沙栅栏防护机理及效应分析[J].中国沙漠,2011,31(1):16-20.

[15]Han T. Computational analysis of three-dimensional turbulent flow around a bluff body in ground Proximity[J].AIAA,1989,27:1213-1219.

[16]Krajnovic S,Davidson L.Flow around a simplified car-Part 1:Large eddy simulation[J].Fluids Engineering,2005,127(5):907-918.

[17]Makoto Tsubokura,Takuji Nakashima.Large eddy simulation on the unsteady aerodynamic response of a road vehicle in transient crosswinds[J].Heat and Fluid Flow,2010,31(6):1075-1086.

[18]中华人民共和国交通部.公路工程技术标准(JTC B01-2003),2004.

[19]Hassan Hemida,Chris Baker.Large-eddy simulation of the flow around a freight wagon subjected to a crosswind[J].Computers and Fluids,2010,39(10):1944-56.

[20]Emmanuel Guilmineau,Francis Chometon.Effect of side wind on a simplified car model:Experimental and numerical analysis[J].Fluids Engineering-Transaction of the Asme,2009,131(2):1104-1115.

[21]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.

[22]Gillieron P,Chometon F.Modelling of stationary three-dimensional separated air flows around an Ahmed reference model[J].ESAIM proceedings,1999,7:173-182.

[23]FLUENT6.3 Users Guide,FLUENT Inc.2006.

[24]Bettle J,Holloway A G L.Venart J E S.A computational study of the aerodynamic forces acting on a tractor-trailer vehicle on a bridge in cross-wind[J].Wind Engineering and Industry Aerodynamics,2003,91(5):573-592.

[25]曾广勇.兰新线大风地区挡风墙的勘测与设计[J].路基工程,1998,(6):24-29.

[26]王洋.基于格子波尔兹曼方法的高速列车气动性能数值计算[D].北京:北京大学工学院,2008.

No Suggested Reading articles found!