Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2013, Vol. 33 Issue (4): 1054-1063    DOI: 10.7522/j.issn.1000-694X.2013.00149
Biology and Soil     
Effects of Groundwater Levels on Photosynthetic Pigments and Light Response of Chlorophyll Fluorescence Parameters of Populus euphratica and Populus pruinosa
WANG Hai-zhen1,2,3, CHEN Jia-li1, HAN Lu1,2, XU Ya-li1, JIA Wen-suo3
1.College of Plant Science, Tarim University, Alar 843300, Xinjiang, China;
2.Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, Xinjiang, China;
3.College of Agriculture & Biotechnology, China Agricultural University, Beijing 100193, China
Download:  PDF (3631KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Photosynthetic pigments and light response curves of chlorophyll fluorescence parameters in leaves of Populus euphratica and Poulus pruinosa, living with different groundwater depths (2.5 m, 3.5 m and 5.0 m) in the upper reaches of Tarmi River, were measured with a portable fluorometer. The results showed that chlorophyll fluorescence parameters of light response curves of P.euphratica and P.pruinosa, such as photosynthetic electron transport rate(ETR), non-photochemical quenching(NPQ), excitation pressure (1-qP), the ratio of antenna thermal dissipation (D), excess excited energy(E),relative limitation of photosynthesis(PED),the deviation from full balance between PSⅠand PSⅡ(β/α-1) increased with increasing photosynthetic active radiation(PAR), but PSⅡactual photochemical efficiency(ΦPSⅡ), photochemistry quenching (qP) and the ratio of absorbed light in photochemistry(P) decreased with increasing PAR under different groundwater levels in arid desert environment. The decrease of groundwater levels led to decrease in leaf water content, maximum electron transport rate (ETRmax), initial slope rate of photochemical reaction(θ),  ETR, ΦPSⅡ , qP, P and leaf content of chlorophyll a (Chla), leaf content of chlorophyll b (Chlb), total chlorophyll (Chla+Chlb), carotenoids, but it led to increase obviously in the ratio of Chla to Chlb (Chla/Chlb), NPQ, D, E, PED, 1-qP, β/α-1 under the same light intensity. The decrease of groundwater levels influenced significantly the chlorophyll fluorescence parameters of light response curves of two tree species, and it led to changes in light energy absorption, transfer and allocation, further to decrease the photosynthetic efficiency. Greater decreases occurred with the deeper groundwater level and P. pruinosa declined more than P. euphratica, it showed P. euphratica were better ecological adaptation to desert environment than P. pruinosa. P. euphratica could maintain relative high ETR, ETRmax, θ, ΦPSⅡ, qP, P and enhanced radiationless energy dissipation to adjust itself energy metabolism, in order to protect the photosynthetic apparatus to operate normally, which was a self-adjustment mechanism of long adaptation to arid desert environment.

Key words:  Populus euphratica      Poulus pruinosa      groundwater level      photosynthetic pigment      chlorophyll fluorescence      light response curves     
Received:  28 May 2012      Published:  28 July 2012
ZTFLH:  Q945.11  

Cite this article: 

WANG Hai-zhen1,2,3, CHEN Jia-li1, HAN Lu1,2, XU Ya-li1, JIA Wen-suo3. Effects of Groundwater Levels on Photosynthetic Pigments and Light Response of Chlorophyll Fluorescence Parameters of Populus euphratica and Populus pruinosa. JOURNAL OF DESERT RESEARCH, 2013, 33(4): 1054-1063.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00149     OR     http://www.desert.ac.cn/EN/Y2013/V33/I4/1054

[1]黄湘,李卫红,马建新,等.通过改变光热条件分析胡杨群落光合作用对土壤呼吸速率的影响[J].中国沙漠,2011,31(5):1167-1173.

[2]朱成刚,李卫红,马晓东,等.塔里木河下游干旱胁迫下的胡杨叶绿素荧光特性研究[J].中国沙漠,2011,31(4):927-936.

[3]韩炜,海米提·依米提,李利,等.胡杨和灰杨的叶绿素荧光参数及茎水势对塔克拉玛干沙漠腹地生境的响应[J].中国沙漠,2011,31(6):1472-1478.

[4]赵广东,刘世荣,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应Ⅰ.叶片养分、叶绿素、可溶性糖和淀粉的变化[J].植物生态学报,2003,27(2):228-234.

[5]Centritto M.Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated CO2[J].Agriculture, Ecosystems and Environment,2005,106:233-242.

[6]Khanizadeh S,Deeii J,Hakam N.Use of chlorophyll fluorescence to evaluate chilling tolerance in strawberry plants[J].Acta Horticulture,2000,538:453-456.

[7]Chen Y N,Zilliacus H,Li W H,et al.Ground-water lever affects plant species diversity along the lower reaches of the Tarim River[J].Journal of Arid Environments,2006,66:231-246.

[8]曾凡江,张希明,李向义,等.塔克拉玛干沙漠南缘柽柳和胡杨水势季节变化研究[J].应用生态学报,2005,16(8):1389-1393.

[9]Zhu G F,Li X,Su Y H,et al.Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv.[J].Tree Physiology,2011,31(2):178-195.

[10]罗青红,李志军,伍维模,等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J].西北植物学报,2006,26(5):983-988.

[11]周朝彬,宋于洋,王炳举,等.干旱胁迫对胡杨光合和叶绿素荧光参数的影响[J].西北林学院学报,2009,24(4):5-9.

[12]王海珍,韩路,徐雅丽,等.胡杨异形叶叶绿素荧光特性对高温的响应[J].生态学报,2011,31(9):2444-2453.

[13]周洪华,陈亚宁,李卫红,等.塔里木河下游胡杨气体交换特性及其环境解释[J].中国沙漠,2008,28(4):665-672.

[14]舒展,张晓素,陈娟,等.叶绿素含量测定的简化[J].植物生理学通讯,2010,46(4):399-402.

[15]White,A J,Critchley C.Rapid light curves:a new fluorescence method to assess the state of the photosynthetic apparatus[J].Photosynthesis Research,1999,59:63-72.

[16]康琅,汪良驹.ALA对西瓜叶片叶绿素荧光光响应曲线的影响[J].南京农业大学学报,2008,31(1):31-36.

[17]Oxborough K,Baker N R.Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv′/Fm′ without measuring Fo′[J].Photosynthesis Research,1997,54:135-142.

[18]Kramer D M,Johnson G,Kiirats O,et al.New fluorescence parameters for the determination of QA redo state and excitation energy fluxes[J].Photosynthesis Research,2004,79,209-218.

[19]Demmig-Adams B,Adams W W Ⅲ,Barker D H.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J].Physiologia Plantarum,1996,98(2):253-264.

[20]曹生奎,冯起,司建华,等.极端干旱区胡杨生长季水分利用效率变化特征研究[J].中国沙漠,2012,32(3):724-729.

[21]林植芳,彭长连,林桂珠.植物黄体素(Lutein)与环氧化黄体素-黄体素循环[J].植物生理学通讯,2006,42(3):385-394.

[22]贺立红,贺丽静,梁红.银杏不同品种叶绿素荧光参数的比较[J].华南农业大学学报,2006,27(4):43-46.

[23]Havaux M,Strasser R J,Greppin H.A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events[J].Photosynthesis Research,1991,27(1):41-45.

[24]师生波,尚艳霞,朱鹏锦,等.青藏高原强UV-B辐射对美丽风毛菊光合作用和色素含量的影响[J].应用生态学报,2011,22(1):53-60.

[25]张亚黎,罗宏海,张旺锋,等.土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响[J].植物生态学报,2008,32(3):681-689.

[26]周生荟,刘玉冰,谭会娟,等.荒漠植物红砂在持续干旱胁迫下的光保护机制研究[J].中国沙漠,2010,30(1):69-73.

[27]van Kooten O,Snel J F H.The use of chlorophyll fluorescence nomenclature in plant stress physiology[J].Photosynthesis Research,1990,25(3):147-150.

[28]吴雪霞,于力,朱为民.外源一氧化氮对NaCl胁迫下番茄幼苗叶绿素荧光特性的影响[J].中国生态农业学报,2009,17(4):746-751.

[29]张春平,何平,袁凤刚,等.外源5-氨基乙酰丙酸对干旱胁迫下草珊瑚叶绿素荧光特性及能量分配的影响[J].中草药,2012,43(1):164-172.

[30]姜闯道,高辉远,邹琦,等.二硫苏糖醇处理导致大豆叶片两光系统间激发能分配失衡[J].植物生理与分子生物学学报,2003,29(6):561-568.

[31]韩炜,曹玲,海米提·依米提,等.塔干柽柳的叶绿素荧光对沙尘暴天气的响应[J].中国沙漠,2012,32(1):86-91.

[32]周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响[J].植物生理与分子生物学报,2004,30(2):153-160.

No Suggested Reading articles found!