Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2015, Vol. 35 Issue (3): 534-541    DOI: 10.7522/j.issn.1000-694X.2014.00088
    
A Numerical Simulation of Sand Particle Concentration Profiles Based on the Distribution of the Initial Lift-off Velocity
Huang Xincheng1,2, Liu Bo1,2, Wang Xufeng1,2, Xiong Ying1,2
1. College of Mechanic and Electronic Engineering, Tarim University, Alar 843300, XinJiang, China;
2. Key Laboratory of Modern Agriculture Engineering, Tarim University, Alar 843300, XinJiang, China
Download:  PDF (2619KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The sand particle concentration profile of wind blown sand in the saltation layer results from the interaction between wind and sand particles, and precise sand particle concentration profile can help to clarify the feed-back mechanism of wind-sand interactions and interactions between sand particles. Based on a special distribution function of sand particles' initial lift-off velocity and a physical model for the sand particles that moving in the wind flow, the trajectories of sand particles that in the steady state wind-sand flow are numerically calculated by fourth order Adams-Bashforth-Moulton method, and the sand particle concentration profiles are analyzed. The results indicate that the sand particle concentration profiles are directly and closely relevant with wind velocity and sand particle diameters and are exponentially or Gamma distributed with height. Interestingly, it will increase with the increase of the sand particle diameter and decrease with the increase of the shear velocity at any particular height.

Key words:  initial lift-off velocity      sand particle concentration profile      fourth order Adams-Bashforth-Moulton method      numerical simulation     
Received:  28 May 2014      Published:  20 May 2015
ZTFLH:  X169  

Cite this article: 

Huang Xincheng, Liu Bo, Wang Xufeng, Xiong Ying. A Numerical Simulation of Sand Particle Concentration Profiles Based on the Distribution of the Initial Lift-off Velocity. JOURNAL OF DESERT RESEARCH, 2015, 35(3): 534-541.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2014.00088     OR     http://www.desert.ac.cn/EN/Y2015/V35/I3/534

[1] Anderson R S, Haff P K.Wind modification and bed response during saltation of sand in air[M]//Aeolian Grain Transport 1:Mechonics.Berlin, Germany:Springer, 1991:21-51.
[2] Sørensen M, McEwan I.On the effect of mid-air collisions on aeolian saltation[J].Sedimentology, 1996, 43(1):65-76.
[3] 郑晓静, 李兴财, 谢莉.沙尘暴中球形沙粒局部带电对电磁波的交叉去极化效应[J].中国沙漠, 2011, 31(3):567-570.
[4] 王萍, 郑晓静.野外近地表风沙流脉动特征分析[J].中国沙漠, 2013, 33(6):1622-1628.
[5] 武生智, 郭为进.二维沙丘迎风坡沙粒跃移运动的数值模拟[J].中国沙漠, 2014, 34(2):307-311.
[6] 杨兴华, 何清, 艾力·买买提依明, 等.塔克拉玛干沙漠东南缘沙尘暴过程中近地表沙尘水平通量观测研究[J].中国沙漠, 2013, 33(5):1299-1304.
[7] 张正偲, 董治宝.腾格里沙漠东南部野外风沙流观测[J].中国沙漠, 2013, 33(4):973-980.
[8] Dong Z B, Wang H T, Zhang X H, et al.Height profile of particle concentration in an aeolian saltating cloud:a wind tunnel investigation by PIV MSD[J].Geophysical Research Letters, 2003, 30(19):GL017915.
[9] Dong Z B, Huang N, Liu X P.Simulation of the probability of midair interparticle collisions in an aeolian saltating cloud[J].Journal of Geophysical Research:Atmospheres, 2005, 110(D24):D006070.
[10] Dong Z B, Qian G Q, Luo W Y, et al.Analysis of the mass flux profiles of an aeolian saltating cloud[J].Journal of Geophysical Research:Atmospheres, 2006, 111(D16):JD006630.
[11] Kok J F, Renno N O.A comprehensive numerical model of steady state saltation (COMSALT)[J].Journal of Geophysical Research:Atmospheres, 2009, 114(D17):JD011702.
[12] Carneiro M V, Ara jo N A M, P htz T, et al.Midair collisions enhance saltation[J].Physical Review Letters, 2013, 111(5):058001.
[13] Berger K J, Anand A, Metzger P T, et al.Role of collisions in erosion of regolith during a lunar landing[J].Physical Review E, 2013, 87(2):022205.
[14] Kok J F.An improved parameterization of wind-blown sand flux on Mars that includes the effect of hysteresis[J].Geophysical Research Letters, 2010, 37(12):GL043646.
[15] Liu X P, Dong Z B.Experimental investigation of the concentration profile of a blowing sand cloud[J].Geomorphology, 2004, 60(3):371-381.
[16] 武建军, 何丽红, 郑晓静.跃移层中沙粒浓度分布特征的研究[J].兰州大学学报 (自然科学版), 2002, 38(3):15-21.
[17] 邹学勇, 朱久江, 董光荣, 等.风沙流结构中起跃沙粒垂直初速度分布函数[J].科学通报, 1992, 23:2175-2177.
[18] Anderson R S, Hallet B.Sediment transport by wind:toward a general model[J].Geological Society of America Bulletin, 1986, 97(5):523-535.
[19] Kang L, Guo L, Liu D.Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity[J].Geomorphology, 2008, 96(1):1-15.
[20] Chepil W S, Woodruff N P, Siddoway F H, et al.Vegetative and nonvegetative materials to control wind and water erosion[J].Soil Science Society of America Journal, 1963, 27(1):86-89.
[21] White B R, Schulz J C.Magnus effect in saltation[J].Journal of Fluid Mechanics, 1977, 81(3):497-512.
[22] White B R.Two-phase measurements of saltating turbulent boundary layer flow[J].International Journal of Multiphase Flow, 1982, 8(5):459-472.
[23] Xie L, Ling Y, Zheng X.Laboratory measurement of saltating sand particles' angular velocities and simulation of its effect on saltation trajectory[J].Journal of Geophysical Research:Atmospheres, 2007, 112(D12):JD008254.
[24] Zou X Y, Cheng H, Zhang C L, et al.Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain[J].Geomorphology, 2007, 90(1):11-22.
[25] McLaughlin J B.Inertial migration of a small sphere in linear shear flows[J].Journal of Fluid Mechanics, 1991, 224:261-274.
[26] Loth E.Lift of a spherical particle subject to vorticity and/or spin[J].AIAA Journal, 2008, 46(4):801-809.
[27] Cheng N S.Simplified settling velocity formula for sediment particle[J].Journal of Hydraulic Engineering, 1997, 123(2):149-152.
[28] Prandtl L.The mechanics of viscous flows[M]//Aerodynamic Theory, vol.III.Berlin, Germany:Springer, 1935:34-208.
[29] Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].New York, USA:Methuen, 1941.
[30] Zhou Y H, Guo X, Zheng X J.Experimental measurement of wind-sand flux and sand transport for naturally mixed sands[J].Physical Review E, 2002, 66(2):021305.
[31] Namikas S L.Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach[J].Sedimentology, 2003, 50(2):303-326.
[32] Liu X, Dong Z, Wang X.Wind tunnel modeling and measurements of the flux of wind-blown sand[J].Journal of Arid Environments, 2006, 66(4):657-672.
[33] Ho T D, Dupont P, El Moctar A O, et al.Particle velocity distribution in saltation transport[J].Physical Review E, 2012, 85(5):052301.
[34] Lü P, Dong Z B.The dependency of sand transport rate by wind on the atmospheric stability:a numerical simulation[J].Geomorphology, 2008, 99(1):296-301.
[35] Dong Z B, Lv P, Zhang Z C, et al.Aeolian transport over a developing transverse dune[J].Journal of Arid Land, 2014, 6(3):243-254.
No Suggested Reading articles found!