Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (3): 198-209.DOI: 10.7522/j.issn.1000-694X.2025.00037
Previous Articles Next Articles
Wenjing Liu1,2(), Yigang Hu3(
), Zhenzi He1,2, Zhenhua Zhang4, Yikang Li4
Received:
2024-11-27
Revised:
2025-02-28
Online:
2025-05-20
Published:
2025-06-30
Contact:
Yigang Hu
CLC Number:
Wenjing Liu, Yigang Hu, Zhenzi He, Zhenhua Zhang, Yikang Li. Vegetation restoration measures affect soil microbial carbon and nitrogen functions in desertified alpine grassland[J]. Journal of Desert Research, 2025, 45(3): 198-209.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00037
草地 类型 | 碳循环 | 氮循环 | ||||
---|---|---|---|---|---|---|
丰富度 | Shannon-Wiener指数 | Simpson指数 | 丰富度 | Shannon-Wiener指数 | Simpson指数 | |
天然草地 | 5 770±292b | 5.82±0.09a | 0.024±0.003a | 661±47b | 5.41±0.07a | 0.011±0.001a |
沙化草地 | 6 105±227a | 5.12±0.05b | 0.057±0.004a | 746±46a | 4.90±0.05b | 0.039±0.004a |
草本人工草地 | 6 389±272a | 6.21±0.03a | 0.014±0.001b | 779±31a | 5.74±0.03a | 0.007±0.001b |
灌丛人工草地 | 6 298±333a | 6.24±0.11a | 0.013±0.002b | 783±73a | 5.73±0.09a | 0.007±0.001b |
Table 1 The α-diversities of C and N cycles related soil microbial communities in different grasslands
草地 类型 | 碳循环 | 氮循环 | ||||
---|---|---|---|---|---|---|
丰富度 | Shannon-Wiener指数 | Simpson指数 | 丰富度 | Shannon-Wiener指数 | Simpson指数 | |
天然草地 | 5 770±292b | 5.82±0.09a | 0.024±0.003a | 661±47b | 5.41±0.07a | 0.011±0.001a |
沙化草地 | 6 105±227a | 5.12±0.05b | 0.057±0.004a | 746±46a | 4.90±0.05b | 0.039±0.004a |
草本人工草地 | 6 389±272a | 6.21±0.03a | 0.014±0.001b | 779±31a | 5.74±0.03a | 0.007±0.001b |
灌丛人工草地 | 6 298±333a | 6.24±0.11a | 0.013±0.002b | 783±73a | 5.73±0.09a | 0.007±0.001b |
草地类型 | 碳循环 | 氮循环 | ||
---|---|---|---|---|
r | P | r | P | |
天然草地-沙化草地 | 1 | 0.004 | 1 | 0.004 |
天然草地-草本人工草地 | 1 | 0.004 | 1 | 0.004 |
天然草地-灌丛人工草地 | 1 | 0.004 | 0.98 | 0.004 |
沙化草地-草本人工草地 | 1 | 0.004 | 1 | 0.004 |
沙化草地-灌丛人工草地 | 1 | 0.004 | 1 | 0.004 |
草本人工草地-灌丛人工草地 | 0.292 | 0.047 | 0.644 | 0.014 |
Table 2 Multivariate nonparametric tests (ANOSIM) based on Bray-Curtis distance of C and N cycles related soil microbial communities structures among grasslands
草地类型 | 碳循环 | 氮循环 | ||
---|---|---|---|---|
r | P | r | P | |
天然草地-沙化草地 | 1 | 0.004 | 1 | 0.004 |
天然草地-草本人工草地 | 1 | 0.004 | 1 | 0.004 |
天然草地-灌丛人工草地 | 1 | 0.004 | 0.98 | 0.004 |
沙化草地-草本人工草地 | 1 | 0.004 | 1 | 0.004 |
沙化草地-灌丛人工草地 | 1 | 0.004 | 1 | 0.004 |
草本人工草地-灌丛人工草地 | 0.292 | 0.047 | 0.644 | 0.014 |
环境因子 | 碳循环 | 氮循环 | ||
---|---|---|---|---|
r | P | r | P | |
植被盖度 | 0.69 | 0.001 | 0.65 | 0.001 |
植被地上生物量 | 0.70 | 0.001 | 0.63 | 0.001 |
植被丰富度 | 0.67 | 0.001 | 0.64 | 0.002 |
植被Shannon指数 | 0.67 | 0.001 | 0.64 | 0.002 |
土壤pH | 0.13 | 0.107 | 0.28 | 0.018 |
土壤电导率 | 0.52 | 0.001 | 0.67 | 0.001 |
土壤容重 | 0.16 | 0.135 | 0.32 | 0.017 |
土壤水分 | 0.62 | 0.001 | 0.57 | 0.001 |
土壤总有机碳 | 0.68 | 0.001 | 0.62 | 0.001 |
土壤全氮 | 0.34 | 0.002 | 0.44 | 0.001 |
土壤全磷 | -0.11 | 0.893 | -0.04 | 0.640 |
土壤铵态氮 | 0.01 | 0.405 | 0.10 | 0.159 |
土壤硝态氮 | 0.62 | 0.001 | 0.60 | 0.001 |
土壤有效磷 | 0.35 | 0.005 | 0.34 | 0.006 |
土壤速效钾 | 0.23 | 0.016 | 0.39 | 0.002 |
Table 3 Mantel test for the correlations of C and N cycles related microbial KOs with vegetation and soil properties
环境因子 | 碳循环 | 氮循环 | ||
---|---|---|---|---|
r | P | r | P | |
植被盖度 | 0.69 | 0.001 | 0.65 | 0.001 |
植被地上生物量 | 0.70 | 0.001 | 0.63 | 0.001 |
植被丰富度 | 0.67 | 0.001 | 0.64 | 0.002 |
植被Shannon指数 | 0.67 | 0.001 | 0.64 | 0.002 |
土壤pH | 0.13 | 0.107 | 0.28 | 0.018 |
土壤电导率 | 0.52 | 0.001 | 0.67 | 0.001 |
土壤容重 | 0.16 | 0.135 | 0.32 | 0.017 |
土壤水分 | 0.62 | 0.001 | 0.57 | 0.001 |
土壤总有机碳 | 0.68 | 0.001 | 0.62 | 0.001 |
土壤全氮 | 0.34 | 0.002 | 0.44 | 0.001 |
土壤全磷 | -0.11 | 0.893 | -0.04 | 0.640 |
土壤铵态氮 | 0.01 | 0.405 | 0.10 | 0.159 |
土壤硝态氮 | 0.62 | 0.001 | 0.60 | 0.001 |
土壤有效磷 | 0.35 | 0.005 | 0.34 | 0.006 |
土壤速效钾 | 0.23 | 0.016 | 0.39 | 0.002 |
1 | 傅伯杰,王晓峰,冯晓明,等.国家生态屏障区生态系统评估[M].北京:科学出版社,2017. |
2 | Zhang H, Tang Z, Wang B,et al.A 250 m annual alpine grassland AGB dataset over the Qinghai-Tibet Plateau (2000-2019) in China based on in situ measurements,UAV photos,and MODIS data[J].Earth System Science Data,2023,15:821-846. |
3 | Niu Y, Zhu H, Yang S,et al.Overgrazing leads to soil cracking that later triggers the severe degradation of alpine meadows on the Tibetan Plateau[J].Land Degradation & Development,2019,30(5):1243-1257. |
4 | Liu Y, Zhang Z, Tong L,et al.Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe[J].Ecological Indicators,2019,106:105504. |
5 | Yuan Q, Yuan Q Z, Ren P,et al.Coupled effect of climate change and human activities on the restoration/degradation of the Qinghai-Tibet Plateau grassland[J].Journal of Geographical Sciences,2021,31(8):1299-1327. |
6 | Gang C, Zhou W, Chen Y,et al.Quantitative assessment of the contributions of climate change and human activities on global grassland degradation[J].Environment Earth Science,2014,72(7):4273-4282. |
7 | Cai H, Yang X, Xu X,et al.Human-induced grassland degradation/restoration in the central Tibetan Plateau: the effects of ecological protection and restoration projects[J].Ecological Engineering,2015,83:112-119. |
8 | Niu Y, Squires V R, Hua L,et al.High-altitude aeolian desertification and sand dunes on the Tibetan Plateau,China[M].Sand Dunes of the Northern Hemisphere.Boca Raton: CRC Press,2023:179-194. |
9 | 胡宜刚,李睿,辛玉琴,等.青藏铁路植被恢复和黑土型退化草地治理的实践与启示[J].草业科学,2015,9(9):1413. |
10 | 张骞,马丽,张中华,等.青藏高寒区退化草地生态恢复:退化现状、恢复措施、效应与展望[J].生态学报,2019,39(20):7441-7451. |
11 | 贺金生,卜海燕,胡小文,等.退化高寒草地的近自然恢复:理论基础与技术途径[J].科学通报,2020,65(34):3898-3908. |
12 | 晏和飘,李文龙,梁天刚,等.青藏高原退化高寒草地恢复对不同措施响应的Meta分析[J].草地学报,2021,29():190-198. |
13 | 王亚妮,胡宜刚,王增如,等.人工植被重建对沙化高寒草地土壤真菌群落特征的影响[J].土壤学报,2023,60(1):280-291. |
14 | 王亚妮,胡宜刚,王增如,等.沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J].草业学报,2022,31(5):26-39. |
15 | Hartmann M, Six J.Soil structure and microbiome functions in agroecosystems[J].Nature Reviews Earth & Environment,2023,4:4-18. |
16 | Jiang J, Song M H.Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J].Plant Ecology,2010,34(8):979-990. |
17 | Wilhelm R C, Amsili J P, Kurtz K S M,et al.Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils[J].ISME Communications,2023,3:1. |
18 | Bahram M, Hildebrand F, Forslund S K,et al.Structure and function of the global topsoil microbiome[J].Nature,2018,560:233-237. |
19 | Olsen S R, Sommers L E.Methods of Soil Analysis[M].Madison,USA:American Society of Agronomy,1982:403-430. |
20 | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000. |
21 | Hyatt D, Chen G L, LoCascio P F,et al.Prodigal: prokaryotic gene recognition and translation initiation site identification[J].BMC Bioinformatics,2010,11:119. |
22 | Hu Y F, Peng J J, Yuan S,et al.Influence of ecological restoration on vegetation and soil microbiological properties in alpine-cold semi-humid desertified land[J].Ecological Engineering,2016,94:88-94. |
23 | Ma W W, Li G, Wu J H,et al.Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau[J].Geoderma,2020,377:114565. |
24 | Wieder W R, Bonan G B, Allison S D.Global soil carbon projections are improved by modelling microbial processes[J].Nature Climate Change,2013,3:909-912. |
25 | Sokol N W, Bradford M A.Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J].Nature Geoscience,2019,12:46-53. |
26 | Wang X, Zhou M, Yue H,et al.Effects of different artificial vegetation restoration modes on soil microbial community structure in the soil erosion area of southern China[J].CATENA,2024,237:107803. |
27 | 张志永,樊宝敏,宋超,等.根系构型研究进展:功能、影响因子和研究方法[J].资源与生态学报,2023,14(1):15-24. |
28 | Li Y, Jiang L, Yuan H,et al.The impact of artificial afforestation on the soil microbial community and function in desertified areas of NW China[J].Forests,2024,15(7):1140. |
29 | Kang L, Song Y, Mackelprang R,et al.Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau[J].Nature Communications,2024,15:5920. |
30 | 孙政国,孙成明,李建龙,等.我国草地生态系统碳循环机制及碳蓄积核算研究回顾与展望[J].草地科学,2021,28(9):1611-1616. |
31 | Celaya-Herrera S, Casados-Vázquez L E, Valdez-Vazquez I,et al.A Cellulolytic Streptomyces Sp.isolated from a highly oligotrophic niche shows potential for hydrolyzing agricultural wastes[J].Bioenergy Research,2021,14:333-343. |
32 | Xie G, Zhang Y, Gong Y,et al.Extreme trophic tales: deciphering bacterial diversity and potential functions in oligotrophic and hypereutrophic lakes[J].BMC Microbiology,2024,24:348. |
33 | Islam Z F, Cordero P R F, Feng J,et al.Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide[J].ISME Journal,2019,13:1801-1813. |
34 | Konneke M, Bernhard A E, de la Torre J R,et al.Isolation of an autotrophic ammonia-oxidizing marine archaeon[J].Nature,2005,437:543-546. |
35 | Jung M Y, Sedlacek C J, Kits K D,et al.Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities[J].ISME,2022,16:272-283. |
36 | Nikitin D A, Ivanova E A, Semenov M V,et al.Diversity,ecological characteristics and identification of some problematic phytopathogenic fusarium in soil: a review[J].Diversity,2023,15(1):49. |
37 | Bai Y, Cotrufo M F.Grassland soil carbon sequestration: current understanding,challenges,and solutions[J].Science,2022,377(6606):603-608. |
38 | Wang D, Zhou H, Zuo J,et al.Responses of soil microbial metabolic activity and community structure to different degraded and restored grassland gradients of the Tibetan Plateau[J].Frontiers in Plant Science,2022,13:770315. |
39 | 吴希慧,王蕊,高长青,等.土地利用驱动的土壤性状变化影响微生物群落结构和功能[J].生态学报,2021,41(20):7989-8002. |
40 | Luo Y, Su B, Currie W S,et al.Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J].BioScience,2004,54(8):731-739. |
41 | 李靖宇,张肖冲,陈韵,等.腾格里沙漠东南缘藻结皮与藓结皮放线菌多样性及其潜在代谢功能[J].生态学报,2020,40(5):1590-1601. |
42 | 方海富,陈翔,杨红玲,等.草地土壤N2O排放对人为干扰的响应研究进展[J].中国沙漠,2025,45(2):184-190. |
43 | Wang M, Li D, Frey B,et al.Land use modified impacts of global change factors on soil microbial structure and function:a global hierarchical meta-analysis[J].Science of The Total Environment,2024,935:173286. |
44 | Chen J, Li F C, Jia B,et al.Regulation of soil nitrogen cycling by shrubs in grasslands[J].Soil Biology and Biochemistry,2024,191:109327. |
45 | Wu D, He X, Jiang L,et al.Root exudates facilitate the regulation of soil microbial community function in the genus Haloxylon [J]. Frontiers Plant Science,2024,15:1461893. |
46 | Yang Y, Zheng L, Zhou Y,et al. Changes in soil microbial community structure and function following degradation in a temperate grassland[J].Journal of Plant Ecology,2021,14(3):384-397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech