img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Effects of NaCl Treatments on Growth and Eco-physiological Characteristics of Tamarix ramosissima

  • Lu Yan ,
  • Lei Jiaqiang ,
  • Zeng Fanjiang ,
  • Xu Lishuai ,
  • Peng Shoulan ,
  • Gao Huanhuan ,
  • Liu Guojun
Expand
  • Cele National Station of Observation & Research for Desert-Grassland Ecosystem in Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Received date: 2013-08-12

  Revised date: 2013-09-27

  Online published: 2014-11-20

Abstract

A pot experiment was conducted to study the influence of different concentrations (0、50、100、200、400 mmol·L-1) NaCl on the growth, leaf hydrogen peroxide (H2O2), malonaldehyde (MDA) content, superoxide dismutases (SOD), catalases (CAT), peroxidase (POD), ascorbate peroxidase (APX) enzymes activity, water potential, soluble sugar and proline contents of Tamarix ramosissima young plant. The results showed that shoot height, crown area, number of branches, dry mass of leaf and branch of T. ramosissima were promoted at lower NaCl concentrations (≤100 mmol·L-1), however, the growth of T. ramosissima were inhibited at higher NaCl concentration (≥200 mmol·L-1), and the suppression effect to lateral root dry mass was larger to crown area, number of branches, dry mass of leaf and branch, and was larger to shoot height. H2O2 and MDA contents were not accumulated at lower NaCl concentrations, but accumulated at higher NaCl concentrations (≥200 mmol·L-1) compared with control level. SOD, POD, CAT and APX activities enhanced at lower NaCl concentrations (≤100 mmol·L-1) compared with control level, whereas SOD and POD activities began to descend at higher NaCl treatments. Water potential in leaves of T. ramosissima reduced significantly with the increasing in NaCl concentrations. Proline and soluble sugar contents increased at lower NaCl concentrations compared with control level.

Cite this article

Lu Yan , Lei Jiaqiang , Zeng Fanjiang , Xu Lishuai , Peng Shoulan , Gao Huanhuan , Liu Guojun . Effects of NaCl Treatments on Growth and Eco-physiological Characteristics of Tamarix ramosissima[J]. Journal of Desert Research, 2014 , 34(6) : 1509 -1515 . DOI: 10.7522/j.issn.1000-694X.2013.00313

References

[[1] Zheng C,Jiang D,Liu F,et al.Effects of salt and water logging stresses and their combination on leaf photosynthesis,chloroplast ATP synthesis,and antioxidant capacity in wheat[J].Plant Science,2009,176:575-582.
[2] Amor N B,Jiménez A,Megdiche W,et al.Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima[J].Physiologia Plantarum,2006,126:446-457.
[3] 谭会娟,李新荣,刘玉冰,等.盐胁迫下红砂愈伤组织的抗氧化能力与耐盐性研究[J].中国沙漠,2013,33(2):549-553.
[4] Sergio L,Paola A D,Cantore V,et al.Effect of salt stress on growth parameters,enzymatic antioxidant system,and lipid peroxidation in wild chicory (Cichorium intybus L.)[J].Acta Physiologiae Plantarum,2012,34:2349-2358.
[5] 谭会娟,李新荣,赵昕,等.红砂愈伤组织适应盐胁迫的渗透调节机制研究[J].中国沙漠,2011,31(5):1119-1123.
[6] Patade V Y,Bhargava S,Suprasanna P.Effects of NaCl and iso-osmotic PEG stress on growth,osmolytes accumulation and antioxidant defense in cultured sugarcane cells[J].Plant Cell Tissue and Organ Culture,2012,108:279-286.
[7] 杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
[8] 李锡文,李延辉,童绍全,等.中国植物志(第50卷第2册)[M].北京:科学出版社,1990:160.
[9] 曾杰,曾凡江,郭海峰,等.策勒绿洲外围2种植物幼苗对NaCl的生理响应[J].干旱区研究,2008,25(5):673-678.
[10] 马海燕,田长彦,冯固,等.多细胞盐腺离子选择性分泌机制及其成因[J].中国科学:生命科学,2010,40(12):1161-1168.
[11] 王磊,严成,魏岩,等.温度、盐分和储藏时间对多花柽柳种子萌发的影响[J].干旱区研究,2008,25(6):797-801.
[12] 武志博,田永祯,赵菊英,等.额济纳绿洲重盐地多枝柽柳分布格局研究[J].中国沙漠,2013,33(1):106-109.
[13] 贾丽娜,吴斌,丁国栋,等.宁夏盐池县3种常见沙生植物群落特征及阻沙能力[J].东北林业大学学报,2009,37(11):56-63.
[14] Sergiev I,Alexieva V,Karanov E.Effect of spermine,atrazine and combination between them on some endogenous protective systems and stress markers in plants[J].Comptes Rendus de I' Acad mie Bulgare Sciences,1997,51:121-124.
[15] Kosugi H,Kikugawa K.Thiobarbituric acid reaction of aldehyes and oxidized lipids in glacial acetic acid[J].Lipids,1985,20:915-920.
[16] Beauchamp C,Fridovich I.Superoxide dismutase:improved assays and an assay applicable to acrylamide gels[J].Analytical Biochemistry,1971,44:276-287.
[17] Chance B,Maehly A C.Assay of catalases and peroxidases[M]//Colowick S P,Kaplan N O.Methods in Enzymology.New York,USA:Academic Press,1955:764-775.
[18] Aebi H.Catalase in vitro[J].Methods in Enzymology,1984,105:121-126.
[19] Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant and Cell Physiology,1981,22:867-880.
[20] 张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法[J].植物生理学通讯,1990,4:62-65.
[21] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003:112-116.
[22] Woolley J T.Sodium and silicon as nutrients for the tomato plant[J].Plant Physiology,1957,32:317-321.
[23] Munns R.Comparative physiology of salt and water stress[J].Plant,Cell and Environment,2002,25:239-250.
[24] 赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
[25] Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7:405-410.
[26] Tommasino E,Griffa S,Grunberg K,et al.Malondialdehyde content as a potential biochemical indicator of tolerance Cenchrus ciliaris L.genotypes under heat stress treatment[J].Grass and Forage Science,2012,67:456-459.
[27] Castelli S L,Grunberg K,Muoz N,et al.Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant Cenchrus ciliaris L.genotypes[J].Flora,2010,205:622-626.
[28] Bai J,Gong C M,Chen K,et al.Examination of antioxidative system's responses in the different phases of drought stress and during recovery in desert plant Reaumuria soongorica (Pall.) Maxim[J].Journal of Plant Biology,2009,52:417-425.
[29] 刘玉冰,谭会娟,鲁艳.红砂愈伤组织耐低温和盐胁迫的适应性[J].兰州大学学报(自然科学版),2010,46(3):68-72.
[30] Rybus-Zajac M,Kubis' J.Effect of UV-B radiation on antioxidative enzyme activity in cucumber cotyledons[J].Acta Biologica Cracoviensia Series Botanica,2010,52:97-102.
[31] 尤佳,王文瑞,卢金,等.盐胁迫对盐生植物黄花补血草种子萌发和幼苗生长的影响[J].生态学报,2012,32(12):3825-3833.
[32] Hu L X,Li H Y,Pang H C,et al.Responses of antioxidant gene,protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance[J].Journal of Plant Physiology,2012,169:146-156.
[33] Blokhina O,Virolainen E,Fagerstedt K V.Antioxidants,oxidative damage and oxygen deprivation stress:a review[J].Annals of Botany,2003,91:179-194.
[34] Dehghan G,Amjad L,Nosrati H.Responses of Alfalfa leaves and roots under different salinity levels[J].Acta Biologica Hungarica,2013,64:207-217.
[35] Mishra P,Bhoomika K,Dubey R S.Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings[J].Protoplasma,2013,250:3-19.
[36] Seckin B,Turkan I,Sekmen A H,et al.The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds.(sea barleygrass) and Hordeum vulgare L.(cultivated barley)[J].Environmental and Experimental Botany,2010,69:76-85.
[37] Mišic D,Šiler B,Živkovíc J N,et al.Contribution of inorganic cations and organic compounds to osmotic adjustment in root cultures of two Centaurium species differing in tolerance to salt stress[J].Plant Cell Tissue and Organ Culture,2012,108:389-400.
[38] 张有福,陈拓,费贯清,等.盐度对三种荒漠植物渗透调节物质积累影响的研究[J].中国沙漠,2007,27(5):787-790.
[39] Ashraf M,Foolad MR.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J].Environmental and Experimental Botany,2007,59:206-216.
[40] 李合生.现代植物生理学[M].北京:高等教育出版社,2001.
Outlines

/