img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Soil Particle Fractal Dimension in the Dune-meadow Ecotone of the Horqin Sandy Land

  • Yao Jiaozhuan ,
  • Liu Tingxi ,
  • Tong Xin ,
  • Wang Tianshuai ,
  • Wang Haiyan
Expand
  • Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China

Received date: 2015-09-17

  Revised date: 2015-11-29

  Online published: 2016-03-20

Abstract

The volume fractal dimension model was used to calculate the particle fractal dimension of 49 sampling points in the dune-meadow ecotone in the Horqin Sandy Land and established the relationship between fractal dimension (D) and the different particle level for discuss the correlation between soil fractal dimension and the soil physical properties as well as soil nutrient in semiarid cold area. Resulted showed that: (1) Soil fractal dimension varied from 1.33-2.50 and it had a tendency of decrease from the meadow, farmland in the middle of the study area to the sand dune in the north and south. The fractal dimension has the significantly difference of the different landforms and different landuses. Soil fractal dimension increased in the following order: sand dunes-semi-mobile and semi-fixed dune-fixed dune-farmland-meadow. (2) Fractal dimension was significantly positively logarithmic correlated with clay content and silt content, but significantly negatively logarithmic correlated with sand content. 100 μm diameter can be regarded as a critical diameter .The more the \{>100\} μm content, the lower the fractal dimension; otherwise, the higher fractal dimension. (3) There existed significant correlations between fractal dimension and soil nutrient. The correlation between fractal dimension and electronically conductively, pH, the content of SOM, total nitrogen, total phosphorus was significantly positive, but negative with total potassium. When fractal dimension is larger than 2, the correlation between D and bulk density was negative. But, its positive with saturation moisture content.

Cite this article

Yao Jiaozhuan , Liu Tingxi , Tong Xin , Wang Tianshuai , Wang Haiyan . Soil Particle Fractal Dimension in the Dune-meadow Ecotone of the Horqin Sandy Land[J]. Journal of Desert Research, 2016 , 36(2) : 433 -440 . DOI: 10.7522/j.issn.1000-694X.2014.00175

References

[1] 鲁植雄,张维强,潘君拯.分形理论及其在农业土壤中的应用[J].土壤学进展,1944,22(5):40-45.
[2] Armstrong A C.On the fractal dimension of some transient soil properties[J].Journal of Soil Science,1986,37:641-652.
[3] Bartoli F R,Philippy M,Doirsse S N.Structure and self-similarity in silt and sandy soils:the fractal approach[J].Journal of Soil Science,1991,42:167-185.
[4] 李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994,22(1):1-10.
[5] 杨金玲,李德成,张甘霖,等.土壤颗粒粒径分布质量分形维数和体积分形维数的对比[J].土壤学报,2008,45(3):413-419.
[6] Li Y,Li M,Si B C,et al.Relationship between volume-based and number-based fractal dimensions of soil particle size distributions[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(23):82-91.
[7] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
[8] Martin M A,Montero E.Laser diffraction and Muti fractal analysis for the characterization of dry soil volume-size distributions[J].Soil Science Society of America Journal,1993,57:891-895
[9] 王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545-550.
[10] Kozak E,Sokolowska Z,Stepniewski W,et al.A modified number-based method for estimating fragmentation fractal dimensions of soils[J].Soil Science Society of America Journal,1996,60:1291-1297.
[11] 贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究,2007,26(3):519-525.
[12] 苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24(1):71-74.
[13] 黄冠华,詹卫华.土壤水分特征曲线的分形模拟[J].水科学进展,2002,13(1):55-60.
[14] 刘建立,徐绍辉.根据颗粒大小分布估计土壤水分特征曲线分形模型的应用[J].土壤学报,2003,40(1):46-52.
[15] Tyler S W,Wheatcraft S W.Fractal scaling of soil particle size distributions:analysis and limitation[J].Soil Science Society of America Journal,1992,56:362-369.
[16] 邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
[17] 李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境,2000,9(4):263-265.
[18] 赵哈林,周瑞莲,苏永忠,等.我国北方干旱地区土壤的沙漠化演变过程与机制[J].水土保持学报,2007,21(3):1-5.
[19] 杜海燕,周智彬,刘凤山,等.绿洲化过程中阿拉尔垦区土壤粒径分形变化特征[J].干旱区研究,2013,30(4):615-622.
[20] Rieu M,Sposito G.Fractal fragmentation,soil porosity,and soil-water properties[J].Soil Science Society of America Journal,1991,55(5):1239-1244.
[21] 陈小红,段争虎,谭明亮,等.沙漠化逆转过程中土壤颗粒分形维数点的变化特征-以宁夏盐池县为例[J].干旱区研究,2010,27(2):297-302.
[22] 张世熔,邓良基,周倩等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221-226.
[23] 任雪,褚贵新,王国栋,等.准噶尔盆地南缘绿洲-沙漠过渡带"肥岛"形成过程中土壤颗粒的分形研究[J].中国沙漠,2009,29(2):298-304.
[24] 贾晓红,李新荣,张景光,等.沙冬青灌丛地的土壤颗粒大小分形维数空间变异性分析[J].生态学报,2006,26(9):2827-2833.
[25] 王力,王全九,石滨嘉夫,等.安达市碱性草地土壤颗粒的分维特征[J].中国水土保持科学,2008,6(6):63-67.
[26] 田佳倩,周志勇,包彬,等.农牧交错区草地利用方式导致的土壤颗粒组成成分变化及其对土壤碳氮含量的影响[J].植物生态学报,2008,32(3):601-610.
[27] 柳妍妍,胡玉昆,公延明.高寒草原不同退化阶段土壤颗粒的分形特征[J].水土保持通报,2013,33(5):138-142.
Outlines

/