Aeolian desertification is one of the most serious ecological environment problems, for which remote sensing and spatial-temporal changes analysis provide an effective technical support. Combining these inversion indicators and the Decision Tree Classification method based on MODIS data, the information of aeolian desertification was extracted, a new index(Modified Aeolian Desertification Index, MADI) was given to analyze dynamic changes of aeolian desertified lands in the middle-west part of Inner Mongolia from 2000 to 2014. Adopting the spatial-temporal changes analysis method, changes of aeolian desertified lands at three different temporal scales were explored, and changes of desertification types and deterioration levels also were analyzed in this paper. The results show that: (1) The combination of indicators and the Decision Tree Classification can efficiently extract aeolian desertification information. (2) The types and area of aeolian desertification have a general decline trend in the middle-west part of Inner Mongolia during 2000-2014, the annual average aeolian desertified land area during 2011-2014 is about 1.72×105 km2 which is smaller than that during 2000-2010 by 2×104 km2. (3) Dynamic change of aeolian desertified lands have multi-temporal scale characteristics. Deterioration or rehabilitation trends of aeolian desertified lands at shorter temporal scale is different from those at longer temporal scale. With the increase of temprocal scale, the dynamaic degrees of slight desertification, moderate desertification, severe desertification and very severe desertification land show a decreasing trend. According to our results limited to the shorter research period, it is more reasonable to detect dynamic trend of aeolian desertification and its driving mechanism at 10-year or longer time scales, while it is helpful only to detect those hot spots such as higher desertification risk areas or restoration areas at 5-year or shorter time scales. (4) Different desertication reversion proportions present at different temproal scales, the lager of net desertication reversion proportion is 9.08% from 2005 to 2010 and 13.95% from 2005 to 2014. (5) Aeolian desertification in the whole Mu US Sandy Land continually reverse during 2000-2014, and desertification in the eastern Hobq Desert and the agro-pastrue zone of northern foot of Yinshan Mountains also gradually reverse during 2005-2014. On the contrary, aeolian desertification in the middle-west part of the Otindag Sandy Land present an instability, and tend to deteriorate during 2000-2014.
Kang Wenping
,
Liu Shulin
,
Duan Hanchen
. Monitoring and Spatial-temporal Changes Analysis of AeolianDesertified Lands Based on MODIS Data: A case study on the middle-west part of Inner Mongolia, China[J]. Journal of Desert Research, 2016
, 36(2)
: 307
-318
.
DOI: 10.7522/j.issn.1000-694X.2015.00018
[1] Lamprey H F.Report on the Desert Encroachment Reconnaissance in Northern Sudan[R].Khartoum,Sudan:National Council for Research,Ministry of Agriculture,Food and Resources,1975.
[2] Reynolds J F,Hirscheider A.Applying remote sensing data in desertification monitoring[J].Desertification Control Bulletin,1990(18):6-12.
[3] 王涛,吴薇,王熙章.沙质荒漠化的遥感监测与评价-以中国北方沙质荒漠化区内的实践为例[J].第四纪研究,1998(2):108-118.
[4] Alfredo D C,Emilio C,Camarasa A.Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina[J].Journal of Arid Environment,2002,52(1):121-133.
[5] 王涛,宋翔,颜长珍,等.近35 a来中国北方土地沙漠化趋势的遥感分析[J].中国沙漠,2011,31(6):1351-1356.
[6] Dawellbait M,Morari F.Monitoring desertification in a savannah region in Sudan using Landsat images and spectral mixture analysis[J].Journal of Arid Environments,2012,80:45-55.
[7] 段翰晨,王涛,薛娴,等.基于RS与GIS的科尔沁沙地沙漠化时空演变[J].中国沙漠,2013,33(2):470-477.
[8] 康文平,刘树林.沙漠化遥感监测与定量评价研究综述[J].中国沙漠,2014,34(5):1222-1229.
[9] 刘爱霞,王长耀,王静,等.基于MODIS和NOAA/AVHRR的荒漠化遥感监测方法[J].农业工程学报,2007,23(10):145-150.
[10] 霍艾迪.基于MODIS数据的沙漠化遥感监测技术研究[D].陕西杨陵:西北农林科技大学,2008.
[11] Meng X Z,Jiang Q G,Qi X,et al.Extraction of desertification information in HulunBuir based on MODIS image data[J].Agricultural Science & Technology,2012,13(1):233-237.
[12] 韩兰英,万信,方峰,等.甘肃河西地区沙漠化遥感监测评估[J].干旱区地理,2013,36(1):131-138.
[13] 陈述彭.地学信息图谱探索研究[M].北京:商务印书馆,2001:1-36.
[14] 李军,庄大方.地理数据集成的理论基础与集成体系[J].地球科学进展,2001,20(2):137-145.
[15] 叶庆华,刘高焕,田国良,等.黄河三角洲土地利用时空复合变化信息图谱分析[J].中国科学:D辑,2004,35(5):461-474.
[16] 叶庆华,刘高焕,姚一鸣,等.黄河三角洲新生湿地土地利用变化图谱分析[J].地理科学进展,2003,22(2):141-148.
[17] 张岑,任志远,孙素梅.基于RS和GIS的河西走廊地区城市土地利用时空变化图谱分析——以张掖市甘州区为例[J].干旱地区农业研究,2008,26(1):166-170.
[18] 李少英,黎夏,刘小平,等.基于多时相图谱的土地利用变化特征分析[J].遥感信息,2008(4):39-44.
[19] 王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87.
[20] 赵英时 等.遥感应用分析原理[M].北京:科学出版社,2003:362-364.
[21] 段翰晨.基于多源遥感数据的科尔沁沙地沙漠化遥感监测[D].北京:中国科学院大学,2013.
[22] 刘树林,王涛,屈建军,等.中国北方草原沙漠化过程及其成因分析——以内蒙古苏尼特左旗为例[J].中国沙漠,2009,29(2):206-211.
[23] 卓义.基于MODIS数据的蒙古高原荒漠化遥感定量监测方法研究[D].呼和浩特:内蒙古师范大学,2007.
[24] Xu D Y,Li C L,Song X,et al.The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity[J].Catena,2014,123:11-22.
[25] 周扬,李宁,吉中会,等.基于SPI指数的1981-2010年内蒙古地区干旱时空分布特征[J].自然资源学报,2013,28(10):1694-1706.