img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Distribution of Soil Organic Carbon at Hillslope Scale in Forest-steppe Zone of Qilian Mountains

  • Zhu Meng ,
  • Liu Wei ,
  • Qin Yanyan ,
  • Cao Jianjun ,
  • Li Huiya ,
  • Zhao Yu
Expand
  • 1. Key Laboratory of Ecohydrology of Inland River Basin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Research Institute of Forestry Science of Bailongjiang Forestry Management Bureau, Lanzhou 730070, China; ;
    4. College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China

Received date: 2015-07-26

  Revised date: 2015-09-29

  Online published: 2016-05-20

Abstract

This study examined the effect of slope aspects and positions on SOC concentration and density of different soil depths (0-10, 10-20, 10-20, 20-40,40-60 cm) in forest-steppe zone of Qilian Mountains. Results showed that SOC concentration of whole soil profile increased continuously from south, southwest, west to north-facing slopes at shoulderslope, backslope and footslope positions, while no significant differences were found among valleys. The distribution pattern of SOC concentration among slope positions varied with slope aspects. On south, southwest, and west-facing slopes, SOC concentration at valleys was significantly higher than other slope positions (P<0.05), and footslope position tended to be higher than shoulderslope and backslope positions. On north-facing slope, there was no significant difference among shoulderslope, backslope and footslope positions, and SOC concentration at 20-40 cm and 40-60 cm depths of valley was significantly lower than shoulderslope position (P<0.05). The distribution pattern of SOC density was similar to concentration. SOC density at 0-60 cm depth was maximal on north-facing slope (33.64±0.91 kg·m-2) and valley (34.30±2.55 kg·m-2), and was significantly larger than south, southwest and west-facing slopes by factors of 3.20, 2.87 and 1.90, respectively.

Cite this article

Zhu Meng , Liu Wei , Qin Yanyan , Cao Jianjun , Li Huiya , Zhao Yu . Distribution of Soil Organic Carbon at Hillslope Scale in Forest-steppe Zone of Qilian Mountains[J]. Journal of Desert Research, 2016 , 36(3) : 741 -748 . DOI: 10.7522/j.issn.1000-694X.2015.00155

References

[1] Post W M,Emanuel W R,Zinke P J,et al.Soil carbon pools and world life zones[J].Nature,1982,298(5870):156-159.
[2] Keeling R F,Piper S C,Heimann M.Global and hemispheric CO2 sinks deduced from changes in atmospheric O2concentration[J].Nature,1996,381(6579):218-221.
[3] Feng Q,Endo K N,Cheng G D.Soil carbon in desertified land in relation to site characteristics[J].Geoderma,2002,106(1/2):21-43.
[4] 解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
[5] 徐薇薇,乔木.干旱区土壤有机碳含量与土壤理化性质相关分析[J].中国沙漠,2014,34(6):1558-1561.
[6] 崔永琴,马剑英,刘小宁,等.人类活动对土壤有机碳库的影响研究进展[J].中国沙漠,2011,31(2):407-414.
[7] 苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):19-27.
[8] Czimczik C I,Schmidt M W I,Schulze E D.Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests[J].European Journal of Soil Science,2005,56(3):417-428.
[9] Sigua G C,Coleman S W.Spatial distribution of soil carbon in pastures with cow-calf operation: effects of slope aspect and slope position[J].Journal of Soils and Sediments,2010,10(2):240-247.
[10] Yimer F,Ledin S,Abdelkadir A.Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains,Ethiopia[J].Geoderma,2006,135:335-344.
[11] 南雅芳,郭胜利,张彦军,等.坡向和坡位对小流域梯田土壤有机碳、氮变化的影响[J].植物营养与肥料学报,2012,18(3):595-601.
[12] Arrouays D,Daroussin J,Kicin J L,et al.Improving topsoil carbon storage prediction using a digital elevation model in temperate forest soils of France[J].Soil Science,1998,163(2):103-108.
[13] Hancock G R,Murphy D,Evans K G.Hillslope and catchment scale soil organic carbon concentration:An assessment of the role of geomorphology and soil erosion in an undisturbed environment[J].Geoderma,2010,155(1/2):36-45.
[14] 刘旻霞,王刚.高寒草甸植物群落多样性及土壤因子对坡向的响应[J].生态学杂志,2013,32(2):259-265.
[15] 孙文义,郭胜利,宋小燕.地形和土地利用对黄土丘陵沟壑区表层土壤有机碳空间分布影响[J].自然资源学报,2010,25(3):443-453.
[16] 蒲玉琳,刘世全,张世熔,等.横断山区北段山地土壤基本属性的坡向分异[J].水土保持学报,2008,22(6):112-117.
[17] Wiaux F,Cornelis J T,Cao W,et al.Combined effect of geomorphic and pedogenic processes on the distribution of soil organic carbon quality along an eroding hillslope on loess soil[J].Geoderma,2014,216:36-47.
[18] 蓝永超,丁永建,刘进琪,等.全球气候变暖情景下黑河山区流域水资源的变化[J].中国沙漠,2005,25(6):863-868.
[19] 李鸣骥,石培基.黑河流域张掖市近38 a以来气候变化特征分析[J].中国沙漠,2007,27(6):1048-1054.
[20] 常宗强,冯起,司建华,等.祁连山不同植被类型土壤碳贮量和碳通量[J].生态学杂志,2008,27(5):681-688.
[21] 朱凌宇,潘剑君,张威.祁连山不同海拔土壤有机碳库及分解特征研究[J].环境科学,2013,34(2):668-675.
[22] 何志斌,赵文智,刘鹄,等.祁连山青海云杉林斑表层土壤有机碳特征及其影响因素[J].生态学报,2006,26(8):2572-2577.
[23] 牛赟,刘贤德,赵维俊,等.祁连山青海云杉(Picea crassifolia)林浅层土壤碳、氮含量特征及其相互关系[J].中国沙漠,2014,34(2):371-377.
[24] 张鹏,陈年来,张涛.黑河上游山地青海云杉林土壤有机碳特征及其影响因素[J].中国沙漠,2009,29(3):445-450.
[25] 赵维俊,刘贤德,张学龙,等.祁连山青海云杉(Picea crassifolia)林土壤有机碳与化学性质的相互关系[J].冰川冻土,2014,36(6):1565-1571.
[26] 张虎,温娅丽,马力,等.祁连山北坡中部气候特征及垂直气候带的划分[J].山地学报,2001,19(6):497-502.
[27] 徐艳,张凤荣,段增强,等.区域土壤有机碳密度及碳储量计算方法探讨[J].土壤通报,2005,36(6):22-25.
[28] Mccune B,Keon D.Equations for potential annual direct incident radiation and heat load[J].Journal of Vegetation Science,2002,13(4):603-606.
[29] Zhang Y L,Li X,Bai Y L.An integrated approach to estimate shortwave solar radiation on clear-sky days in rugged terrain using MODIS atmospheric products[J].Solar Energy,2015,113:347 357.
[30] Rorison I H,Sutton F,Hunt R.Local climate,topography and plant growth in Lathkill Dale NNR.I.A twelve-year summary of solar radiation and temperature[J].Plant,Cell & Environment,1986,9(1):49-56.
[31] Haase P,Pugnaire F I,Clark S C,et al.Environmental control of canopy dynamics and photosynthetic rate in the evergreen tussock grass Stipa tenacissima[J].Plant Ecology,1999,145(2):327-339.
[32] 贾海坤,刘颖慧,徐霞,等.皇甫川流域柠条林地水分动态模拟——坡度、坡向、植被密度与土壤水分的关系[J].植物生态学报,2005,29(6):44-51.
[33] 常宗强,史作民,冯起,等.黑河流域山区牧坡草地土壤呼吸的时间变化及水热因子影响[J].应用生态学报,2005,16(9):1603-1606.
[34] 何燕,李廷轩,王永东.低山丘陵区不同坡位茶园土壤有机碳特征研究[J].水土保持学报,2009,23(2):122-126.
[35] Qiu Y,Fu B J,Wang J,et al.Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau,China[J].Journal of Arid Environments,2001,49(4):723-750.
[36] Xu M,Qi Y.Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California[J].Global Change Biology,2001,7(6):667-677.
[37] 贺红元,车克钧,傅辉恩,等.祁连山寺大隆林区水土流失状况的初步研究[J].水土保持学报,1992,6(1):48-56.
[38] Essery R.Statistical representation of mountain shading[J].Hydrology and Earth System Sciences,2004,8(6):1045-1050.
[39] 柴晓虹,吴永华,钟芳.不同降雨量下人工重建林土壤性状及微生物特性比较[J].中国沙漠,2014,34(6):1576-1583.
Outlines

/