In recent decades, because of increasingly serious climate problem and anthropogenic destruction, the recession of Ammopiptanthus mongolicus was more and more savage. Study of how A.mongolicus adapts to the degradation process in physiology and their physiological changes after stumping can provide basis for preventing the degradation of A.mongolicus and the rejuvenation of A.mongolicus. Based on many years of field observation and research, we put forward the hypothesis that "the transpiration rate of A.mongolicus in the degradation process is higher" and "the transpiration rate of the stumped A.mongolicus is higher". In order to prove this hypothesis, six study objects were selected in the West Erdos Nature Reserve: the A.mongolicus without dead branch, with 30% of dead branches, with 60% of dead branches, with 90% of dead branches and the stumped A.mongolicus after 1 year and 3 years, repectively. The results showed that: (1) the transpiration rate of A. mongolicus rose with increasing dead branches, the transpiration rate of stumped A. mongolicus was higher than A. mongolicus without stumping; (2) the plant transpiration transfer coefficient of A.mongolicus with 60% of dead branches or more was higher than 0.5, and that of A.mongolicus with 30% of dead branches or less was lower than 0.5, so 0.5 can be taken as the threshold to diagnose the health of A.mongolicus; (3) the A.mongolicus with 60% of dead branches or more should be stumped to achieve the rejuvenation of A.mongolicus; (4) the plant transpiration transfer coefficient of A.mongolicus was observed by thermal imaging technology, therefore, the thermal imaging technology can be applied in the diagnosis of A.mongolicus in future work and study.
[1] 吴征缢.中国植被[M].北京:科学出版社,1980:585-593.
[2] 马松梅,张明理,陈曦.沙冬青属植物在亚洲中部荒漠区的潜在地理分布及驱动因子分析[J].中国沙漠,2012(5):1301-1307.
[3] 司守霞,任叔辉,朱瑞琪.我国荒漠化地区的生物多样性保育研究[J].西北林学院学报,2006(1):22-27.
[4] 刘家琼,邱明新,杨堃,等.沙冬青植物群落研究[J].中国沙漠,1995(2):109-115.
[5] 李玉俊.沙坡头地区沙地育苗实验[J].中国野生植物资源,1991(2):21-23.
[6] 费云标,孙龙华,黄涛,等.沙冬青高活性抗冻蛋白的发现[J].植物学报,1994,36(8):649-650.
[7] 魏令波,江勇,舒念红,等.沙冬青叶片热稳定抗冻蛋白特性分析[J].植物学报,1999,41(8):837-841.
[8] 刘果厚.阿拉善荒漠特有植物沙冬青濒危原因的研究[J].植物研究,1998(3):341-345.
[9] Qiu G Y,Sase S,Shi P,et al.Theoretical analysis and experimental verification of a remotely measurable plant transpiration transfer coefficient[J].Japan Agricultural Research Quarterly,2003,37(3):141-150.
[10] 林洁荣,刘建昌,苏水金.留茬高度对闽牧牧草的影响[J].草业科学,2005,19(11):25-28.
[11] 李根前,唐德瑞.毛乌素沙地中国沙棘平茬更新的萌蘖生长与再生能力[J].沙棘,2000,13(4):9-12.
[12] 张荔,姜维新.小红柳平茬复壮更新及利用技术研究[J].内蒙古林业科技,2007,33(1):29-31.
[13] 李博.内蒙古鄂尔多斯高原自然资源与环境研究[M].北京:科学出版社,1990:5.
[14] 薛建辉.森林生态学[M].北京:中国林业出版社,2006:78-80.
[15] 田涛.毛乌素沙地中国沙棘平茬萌蘖种群动态研究[D].陕西杨凌:西北农林科技大学,2006.
[16] Qiu G Y,Shi P,Wang L.Theoretical analysis of a remotely measurable soil evaporation transfer coefficient[J].Remote Sensing of Environment,2006,101(3):390-398.
[17] Qiu G Y,Miyamoto K,Sase S,et al.Comparison of the three-temperature model and conventional models for estimating transpiration [J].Japan Agricultural Research Quarterly,2002,36(2):73-82.
[18] Qiu G Y,Miyamoto K,Sase S,et al.Detection of crop transpiration and water stress by temperature-related approach under field and greenhouse conditions[J].Japan Agricultural Research Quarterly,2000,34(1):29-37.
[19] Qiu G Y,Ben-Asher J,Yano T,et al.Estimation of soil evaporation using the differential temperature method[J].Soil Science Society of America Journal,1999,63(6):1608-1614.
[20] Qiu G Y,Momii K,Yano T,et al.Experimental verification of a mechanistic model to partition evapotranspiration into soil water and plant evaporation[J].Agricultural and Forest Meteorology,1999,93(2):79-93.
[21] Qiu G Y,Yano T,Momii K.An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface[J].Journal of Hydrology,1998,210(1):93-105.
[22] Qiu G Y.A New Method to Estimate Evapotranspiration[D].Kagoshima,Japan:The United Graduate School of Agriculture Science,1996.
[23] Qiu G Y,Momii K,Yano T.Estimation of plant transpiration by imitation leaf temperature.Ⅰ.Theoretical consideration and field verification[J].Transaction of the Japanese Society of Irrigation,Drainage and Reclamation Engineering,1996,64(3):47-56.
[24] Qiu G Y,Yano T,Momii K.Estimation of plant transpiration by imitation leaf temperature.II.Application of imitation leaf temperature for detection of crop water stress[J].Transaction of the Japanese Society of Irrigation,Drainage and Reclamation Engineering,1996,64(5):43-49.
[25] 冯起,司建华,张艳武,等.极端干旱地区绿洲小气候特征及其生态意义[J].地理学报,2006(1):99-108.
[26] 闫人华,熊黑钢,李成圆,等.绿洲-荒漠过渡带蒸散与主要环境因子关系分析[J].干旱区资源与环境,2013,27(1):154-160.
[27] 王任超,张利平,徐霞.南水北调中线工程水源区蒸散发计算方法比较及影响因素分析[J].长江流域资源与环境,2012(1):127-133.
[28] 尹传华,冯固,田长彦,等.塔克拉玛干沙漠北缘柽柳灌丛肥岛效应的变化规律及其生态学意义[J].北京林业大学学报,2008(1):52-57.
[29] 张瑾.北疆典型荒漠植被梭梭(HaloxylonAmmodendron)"肥岛"特征研究[D].乌鲁木齐:新疆农业大学,2007.
[30] 任雪.北疆绿洲-荒漠过渡带灌木"肥岛"效应特征及其环境学意义研究[D].新疆石河子:石河子大学,2008.
[31] 任雪,褚贵新,宋日权,等.准噶尔盆地南缘绿洲-荒漠过渡带梭梭"肥岛"效应特征[J].土壤通报,2010(1):100-104.
[32] 陈鸿洋.荒漠区红砂灌丛"肥岛"效应及其固碳特征[D].兰州:兰州大学,2014.
[33] 李光仁.干旱区天然白刺平茬效应初探[J].甘肃林业科技,1999,3:40-41.
[34] Phillips I D J.Apical dominance[J].Annual Review of Plant Physiology,1975,26(1):341-367.
[35] Bangerth F,Li C J,Gruber J.Mutual interaction of auxin and cytokinins in regulating correlative dominance[J].Plant Growth Regulation,2000,32(2/3):205-217.
[36] 李应罡,徐新文,李生宇,等.沙漠公路防护林乔木状沙拐枣的平茬效益分析[J].干旱区资源与环境,2008,22(8):196-200.
[37] 张荔,姜维新.小红柳平茬复壮更新及利用技术研究[J].内蒙古林业科技,2007,33(1):29-31.
[38] 董雪,杨永华,高永,等.西鄂尔多斯沙冬青(Ammopiptanthus mongolicus)平茬效应初探[J].中国沙漠,2013(6):1723-1730.
[39] 贾志军,张稳,黄耀,等.三江平原沼泽湿地垦殖对蒸散量的影响[J].环境科学,2010(4):833-842.
[40] 李程.荒漠绿洲过渡带白刺沙堆的水分收支研究[D].北京:北京大学,2013.
[41] 李根前,黄宝龙,唐德瑞,等.毛乌素沙地中国沙棘无性系种群年龄结构动态与遗传果研究[J].应用生态学报,2001,12(3):347-350.
[42] 李根前,黄宝龙,唐德瑞,等.毛乌素沙地中国沙棘无性系生长调节[J].应用生态学报,2001,12(5):682-688.
[43] 李根前,赵粉侠,李秀寨,等.毛乌素沙地中国沙棘种群数量动态研究[J].林业科学,2004,40(1):180-184.