This paper selected the Ebinur Lake as a study area and established multivariate stepwise regression, partial least square regression and support vector machine regression model based on the site measured data of apparent electronic conductivity and spectral with EM38 and ASD Fieldspec HH. In the three models, the apparent electronic conductivity measured with EM38 selected as independent variable and the measured soil soluble salt content as a dependent variable, and the selected spectral transformation form and characteristic bands have best correlation with the interpreted soil salinity data from EM38 used for model establishment. Results show that, firstly, the correlation coefficient of multivariate regression model reached up to 0.91, and indicated electromagnetic induction technology can be used for the indirect monitoring of soil salinity in this area; secondly, first-order differential transformation is better than the second-order differential transformation, the spectrum transformed with first-order differential can better predict soil salinity; thirdly, the spectrum transformed with first-order differential has good performance in all the three established models, and the model with support vector machine has higher accuracy than the partial least square and multivariate stepwise regression models. Accordingly, the support vector machine regression model established with first order differentiation transformation can be used for as a desirable monitoring model for arid lakeside wetland soil salinization.
[1] Ding J L,Wu M C,Tashpolat T.Study on soil salinization information in Arid Region using remote sensing technique[J].Agricultural Sciences in China,2011,10(3):404-411.
[2] Hart B T,Bailey P,Edwards R,et al.Effects of salinity on river,stream and wetland ecosystems in Victoria,Australia[J].Water Research,1990,24(9):1103-1117.
[3] Mettemicht G,Zinck J A.Remote Sensing of Soil Salinization-impact on Land Management[M].Boca Raton,USA:CRC Press,2009:200.
[4] 刘广明,吴亚坤,杨劲松,等.基于电磁感应技术的区域三维土壤盐分空间变异研究[J].农业机械学报,2013,44(7):78-82.
[5] 李淑敏,李红,周连第.土壤电导率的快速测量(EM38)与数据的研究应用[J].安徽农业科学,2009,37(29):14001-14004,14015.
[6] Aragüés R,Urdanoz V,Çetin M,et al.Soil salinity related to physical soil characteristics and irrigation management in four Mediterranean irrigation districts[J].Agricultural Water Management,2011,98(6):959-966.
[7] Herrero J,Netthisinghe A,Hudnall W H,et al.Electromagnetic induction as a basis for soil salinity monitoring within a Mediterranean irrigation district[J].Journal of Hydrology,2011,405:427-438.
[8] Feikema P M,Baker T G.Effect of soil salinity on growth of irrigated plantation Eucalyptus in south-eastern Australia[J].Agricultural Water Management,2011,98(7):1180-1188.
[9] 姚荣江,杨劲松,刘广明,等.电磁感应仪EM38用于土壤盐渍剖面分类与评价研究[J].中国地质灾害与防治学报,2007,18(4):54-59.
[10] 姚荣江,杨劲松,刘广明.EM38在黄河三角洲地区土壤盐渍化快速检测中的应用研究[J].干旱地区农业研究,2008,26(1):67-73.
[11] 姚荣江,杨劲松,邹平,等.基于电磁感应仪的田间土壤盐渍度及其空间分布定量评估[J].中国农业科学,2008,41(2):460-469.
[12] Ding J L,Yu D L.Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis,China,using remote sensing and electromagnetic induction instruments[J].Geoderma,2014,235:316-322.
[13] 姚远,丁建丽,雷磊,等.干湿季节下基于遥感和电磁感应技术的塔里木盆地北缘绿洲土壤盐分的空间变异性[J].生态学报,2013,33(17):5308-5319.
[14] 彭杰,刘焕军,史舟,等.盐渍化土壤光谱特征的区域异质性及盐分反演[J].农业工程学报,2014,30(17):167-174.
[15] Farifteh J,Van der Meer F,Atzberger C,et al.Quantitative analysis of salt-affected soil reflectance spectra:a comparison of two adaptive methods (PLSR and ANN)[J].Remote Sensing of Environment,2007,110(1):59-78.
[16] Weng Y L,Gong P,Zhu Z L.A spectral index for estimating soil salinity in the Yellow River Delta region of China using EO-1 Hyperion data[J].Pedosphere,2010,20(3):378-388.
[17] 庞国锦,王涛,孙家欢,等.基于高光谱的民勤土壤盐分定量分析[J].中国沙漠,2014,34(4):1073-1079.
[18] 陶兰花,塔西甫拉提·特依拜,姜红涛,等.克里雅河流域土壤盐分光谱定量分析[J].中国沙漠,2014,34(6):1562-1567.
[19] Ayetiguli S,Zhao S H,Wen Y M.Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra[J].International Journal of Applied Earth Observation and Geoinformation,2014,26:156-175.
[20] 姜红涛,塔西甫拉提·特依拜,阿尔达克·克里木,等.艾比湖流域NDVI变化及其与降水、温度的关系[J].中国沙漠,2014,34(6):1678-1684.
[21] 马倩,武胜利,刘永泉,等.艾比湖流域抛物线沙丘表层沉积物粒度特征[J].中国沙漠,2014,34(3):650-657
[22] 马倩,孙虎,昝梅.新疆艾比湖生态脆弱区生态服务价值对土地利用变化的响应[J].地域研究与开发,2011,30(4):112-116.
[23] 张芳,熊黑钢,栾福明.新疆天山北坡常见盐生植物端元尺度光谱特征及识别[J].光谱学与光谱分析,2011,31(12):3336-3341.
[24] 张飞,塔西甫拉提特依拜,丁建丽,等.新疆绿洲地物反射光谱——以渭干河-库车河三角洲绿洲为例[J].红外与毫米波学报,2010,29(3):190-195.
[25] 姚远,丁建丽,张芳,等.基于高光谱指数和电磁感应技术的区域土壤盐渍化监测模型[J].光谱学与光谱分析,2013,33(6):1658-1664.
[26] 中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
[27] 栾福明,张小雷,熊黑钢,等.基于不同模型的土壤有机质含量高光谱反演比较分析[J].光谱学与光谱分析,2013,33(1):196-200.
[28] 高志海,白黎娜,王琫瑜,等.荒漠化土地土壤有机质含量的实测光谱估算[J].林业科学,2011,47(6):9-16.
[29] 韩兆迎,朱西存,刘庆,等.黄河三角洲土壤有机质含量的高光谱反演[J].植物营养与肥料学报,2014,20(6):1545-1552.
[30] 曾胤,陆宇振,杜昌文,等.应用红外光声光谱技术及支持向量机模型测定土壤有机质含量[J].土壤学报,2014,6:1262-1269.