img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Effects of Groundwater Level on Morphological, Anatomical Structure and Leaf Hydraulic Conductance of Populus euphratica

  • Wang Rizhao ,
  • Chen Yapeng ,
  • Chen Yaning ,
  • Pan Yingping ,
  • He Guangzhi
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Pratacultural and Environmental Science, Xinjiang Agricultural University, Urumqi 830052, China

Received date: 2015-05-28

  Revised date: 2015-07-14

  Online published: 2016-09-20

Abstract

Structure is the basis of function, morphological and anatomical structure of photosynthetic organ can indicate their leaf hydraulic conductance (Kleaf). In this paper, the relationships between morphological, anatomical structure parameters and leaf maximum hydraulic conductance (Kleaf-max) were analyzed at different groundwater depths in the lower reaches of Tarim River. The results showed that:(1) Populus euphratica leaf exhibited obvious xeric structure:leaf was thick and isobilateral, and the upper and lower epidermis were made up of two-storey cell. There were highly developed palisade tissue, highly developed leaf vein, sunken stomata and two types of crystals:prismatic crystal and clustered crystal in the mesophyll cells. (2) The study showed that leaf thickness (LT), epidermal thickness (ET), palisade tissue thickness (PT), the ratio of palisade tissue thickness to spongy tissue thickness (PT/ST), leaf vein density (LVD), major vein vessel diameter (MVD), stomatal density (SD) increased, stomatal area (SA) decreased as the groundwater depth increased. So we concluded that Populus euphratica changed the morphological and anatomical structure and leaf hydraulic conductance to adapt drought. (3) Kleaf-max showed significant positive correlations with LT, ET, PT, PT/ST, LVD, MVD, SD(P<0.01), while showing significantly negative correlation with SA (P<0.01). These indicted that the character of morphological and anatomical structure was the basis of P.euphratica leaf hydraulics.

Cite this article

Wang Rizhao , Chen Yapeng , Chen Yaning , Pan Yingping , He Guangzhi . Effects of Groundwater Level on Morphological, Anatomical Structure and Leaf Hydraulic Conductance of Populus euphratica[J]. Journal of Desert Research, 2016 , 36(5) : 1302 -1309 . DOI: 10.7522/j.issn.1000-694X.2015.00123

References

[1] 陈亚宁,张小雷,祝向民,等.新疆塔里木河下游断流河道输水的生态效应分析[J].中国科学:D辑,2004,34(5):475-482.
[2] Klich M G.Leaf variations in Elaeagnus angustifolia related to heterogeneity[J].Environmental and Experimental Botany,2000,44(3):171-183.
[3] 周智彬,李培军.我国旱生植物的形态解剖学研究[J].干旱区研究,2002,19(2):35-40.
[4] He C X,Li J Y,Zhou P,et al.Changes of leaf morphological,anatomical structure and carbon isotope ratio with the height of the Wangtian tree (Parashorea chinensis) in Xishuangbanna,China[J].Journal of Integrative Plant Biology,2008,50(2):168-173.
[5] Galmes J,Ochogav A J,Gago J,et al.Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum:anatomical adaptations in relation to gas exchange parameters[J].Plant,Cell & Environment,2013,36(5):920-935.
[6] 李鸿雁,李志勇,师文贵,等.内蒙古扁蓿豆叶片解剖性状与抗旱性的研究[J].草业学报,2012,21(3):138-146.
[7] 邱权,潘昕,李吉跃,等.青藏高原20种灌木抗旱形态和生理特征[J].植物生态学报,2014,38(6):562-575.
[8] 李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2006,22:118-127.
[9] Sack L,Cowan P D,Jaikumar N,et al.The ‘hydrology’ of leaves:coordination of structure and function in temperate woody species[J].Plant,Cell & Environment,2003,26(8):1343-1356.
[10] Scoffoni C,Rawls M,McKown A,et al.Decline of leaf hydraulic conductance with dehydration:relationship to leaf size and venation architecture[J].Plant Physiology,2011,156(2):832-843.
[11] Aasamaa K,Niinemets V,S ber A.Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny[J].Tree Physiology,2005,25(11):1409-1418.
[12] Brodribb T J,Feild T S,Sack L.Viewing leaf structure and evolution from a hydraulic perspective[J].Functional Plant Biology,2010,37(6):488-498.
[13] 张志亮,刘国东,张富仓,等.植物叶片导水率的研究进展[J].生态学杂志,2014,33(6):1663-1670.
[14] Brodribb T J,Holbrook N M.Diurnal depression of leaf hydraulic conductance in a tropical tree species[J].Plant,Cell & Environment,2004,27(7):820-827.
[15] Aasamaa K,S ber A,Rahi M.Leaf anatomical characteristics associated with shoot hydraulic conductance,stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees[J].Functional Plant Biology,2001,28(8):765-774.
[16] 王海珍,陈加利,韩路,等.地下水位对胡杨(Populus euphratica)和灰胡杨(Populus pruinosa)叶绿素荧光光响应与光合色素含量的影响[J].中国沙漠,2013,33(4):1054-1063.
[17] 周洪华,陈亚宁,李卫红,等.塔里木河下游胡杨气体交换特性及其环境解释[J].中国沙漠,2008,28(4):665-672.
[18] 司建华,常宗强,苏永红,等.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报,2008,28(1):125-130.
[19] 付爱红,李卫红,陈亚宁,等.极端干旱区胡杨宽卵形叶水分变化影响因子分析[J].中国沙漠,2012,32(1):65-72.
[20] 司建华,冯起,张小由.极端干旱区胡杨水势及影响因子研究[J].中国沙漠,2005,25(4):505-510.
[21] 陈亚鹏,陈亚宁,李卫红,等.干早环境下高温对胡杨光合作用的影响[J].中国沙漠,2009,29(3):474-479.
[22] 周洪华,陈亚宁,李卫红,等.干旱区胡杨光合作用对高温和CO2浓度的响应[J].生态学报,2009,29(6):2797-2810.
[23] 曹生奎,冯起,司建华,等.极端干旱区胡杨生长季水分利用效率变化特征研究[J].中国沙漠,2012,32(3):724-729.
[24] 谭永芹,柏新富,朱建军,等.干旱区五种木本植物枝叶水分状况与其抗旱性能[J].生态学报,2011,31(22):6815-6823.
[25] 张玲,焦培培,李志军.中国新疆灰叶胡杨群体遗传多样性的SSR分析[J].生态学杂志,2012,31(11):2755-2761.
[26] Eusemann P,Fehrenz S,Schnittler M.Development of two microsatellite multiplex PCR systems for high throughput genotyping in Populus euphratica[J].Journal of Forestry Research,2009,20(3):195-198.
[27] 杨树德,郑文菊,陈国仓,等.胡杨披针形叶与宽卵形叶的超微结构与光合特性的差异[J].西北植物学报,2005,25(1):14-21.
[28] 杨赵平,刘琴,李志军.胡杨雌雄株叶片的比较解剖学研究[J].西北植物学报,2011,31(1):79-83.
[29] 李卫红,庄丽,公维昌,等.塔里木河下游胡杨叶片变化与环境异质性[J].中国沙漠,2009,29(4):680-687.
[30] 陈亚宁,李卫红,徐海量,等.塔里木河下游地下水位对植被的影响[J].地理学报,2003,58(4):542-549.
[31] 李正理,张新英.植物解剖学[M].北京:高等教育出版社,1984.
[32] Brodribb T J,Holbrook N M.Stomatal closure during leaf dehydration,correlation with other leaf physiological traits[J].Plant Physiology,2003,132(4):2166-2173.
[33] 王万里.压力室(PRESSURE CHAMBER)在植物水分状况研究中的应用[J].植物生理学通讯,1984,3:52-57.
[34] 陈豫梅,陈厚彬.香蕉叶片形态结构与抗旱性关系的研究[J].热带农业科学,2001(4):14-16.
[35] 郭改改,封斌,麻保林,等.不同区域长柄扁桃叶片解剖结构及其抗旱性分析[J].西北植物学报,2013,33(4):720-728.
[36] Sack L,Holbrook N M.Leaf hydraulics[J].Annual Review fo Plant Biology,2006,57:361-381.
[37] Sinclair T R,Zwieniecki M A,Holbrook N M.Low leaf hydraulic conductance associated with drought tolerance in soybean[J].Physiologia Plantarum,2008,132(4):446-451.
[38] 张海娜,苏培玺,李善家,等.荒漠区植物光合器官解剖结构对水分利用效率的指示作用[J].生态学报,2013,33(16):4909-4918.
[39] 潘莹萍,陈亚鹏.叶片水力性状研究进展[J].生态学杂志,2014,33(10):2834-2841.
[40] Sack L,Frole K.Leaf structural diversity is related to hydraulic capacity in?tropical rain forest trees[J].Ecology,2006,87(2):483-491.
[41] 董建芳,李春红,刘果厚,等.内蒙古6种沙生柳树叶片解剖结构的抗旱性分析[J].中国沙漠,2009,29(3):480-484.
[42] Pearce D W,Millard S,Bray D F,et al.Stomatal characteristics of riparian poplar species in a semi-arid environment[J].Tree Physiology,2006,26(2):211-218.
[43] Sack L,Scoffoni C.Leaf venation:structure,function,development,evolution,ecology and applications in the past,present and future[J].New Phytologist,2013,198(4):983-1000.
[44] Sack L,Scoffoni C,John G P,et al.How do leaf veins influence the worldwide leaf economic spectrum?Review and synthesis[J].Journal of Experimental Botany,2013,64(13):4053-4080.
[45] Pockman W T,Sperry J S.Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation[J].American Journal of Botany,2000,87(9):1287-1299.
[46] 陈亚鹏,陈亚宁,徐长春,等.塔里木河下游地下水埋深对胡杨气体交换和叶绿素荧光的影响[J].生态学报,2011,31(2):344-353.
Outlines

/