img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Leaf Traits of Vitex rotundifolia along Desertification Gradient in a Sandy Hill of the Poyang Lake

  • Chang Lingling ,
  • Cai Jiayan ,
  • Wu Qin ,
  • Jin Qi ,
  • Zhou Hongyan ,
  • Hu Qiwu
Expand
  • 1. School of Geography and Environment;
    2. Key Laboratory of Poyang Lake Wetland and Watershed Research of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China

Received date: 2015-10-16

  Revised date: 2015-12-22

  Online published: 2017-01-20

Abstract

There are some sandy hills distributed along Poyang Lake, which belong to typical southern desertification. As located in subtropical climate zone, the sandy hills differed in vegetation and soil from northern deserts. In this study, leaves of Vitex rotundifolia were sampled along desertification intensity gradient in Duobao sandy hill, Poyang Lake. Subsequently, leaf area, specific leaf area (SLA), leaf nitrogen (N) and phosphorus (P) were measured. The objective of this study was to clarify the intraspecific variation in leaf traits and the responses to desertification intensity variation. Results indicated that leaf area of V. rotundifolia ranged from 1.58 to 13.14 cm2. No significant correlation was found between leaf area and the distance away from lakeshore line. Thus, leaf area could not indicate the effects of desertification intensity on V. rotundifolia. SLA varied from 81.6 to 206.3 cm2·g-1. SLA showed significant intraspecific difference (P<0.05). Leaf N ranged from 16.0 to 23.2 mg·g-1, whereas leaf P varied from 0.82 to 2.20 mg·g-1. Both leaf N and P showed no significant intraspecific difference. SLA was significantly positively correlated with leaf N, but not with leaf P. SLA was very sensitive to desertification intensity variation, and decreased with the increase of desertification. However, leaf N and P, as well as N:P stoichiometry were not sensitive to the desertification variation, and maintained relatively stable. According to the ratio of leaf N:P, V. rotundifolia was more limited by phosphorus, rather than nitrogen.

Cite this article

Chang Lingling , Cai Jiayan , Wu Qin , Jin Qi , Zhou Hongyan , Hu Qiwu . Leaf Traits of Vitex rotundifolia along Desertification Gradient in a Sandy Hill of the Poyang Lake[J]. Journal of Desert Research, 2017 , 37(1) : 81 -85 . DOI: 10.7522/j.issn.1000-694X.2015.00195

References

[1] 张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展[J].植物生态学报,2004,28(6):844-852.
[2] Wright I J,Reich P B,Westoby M,et al.The worldwide leaf economics spectrum[J].Nature,2004,428:821-827.
[3] He J S,Wang Z H,Wang X P,et al.A test of t he generality of leaf trait relationships on the Tibetan Plateau[J].New Phytologists,2006,170:835-848.
[4] 毛伟,李玉霖,张铜会,等.不同尺度生态学中植物叶性状研究概述[J].中国沙漠,2012,32(1):33-41.
[5] Osnas J L D,Lichstein J W,Reich P B,et al.Global leaf trait relationships mass area and leaf economics spectrum[J].Science,2013,340:741-744.
[6] Freschet G T,Cornelissen J H C,van Logtestijn R S P,et al.Evidence of the'plant economics spectrum'in a subarctic flora[J].Journal of Ecology,2010,98:362-373.
[7] 李永华,罗天祥,卢琦.青海省沙珠玉治沙站17种主要植物叶性因子的比较[J].生态学报,2005,25(5):994-999.
[8] 陈晨,刘丹辉,吴键军,等.东灵山地区辽东栎叶性状与地形因子关系[J].生态学杂志,2015,34(8):2131-2139.
[9] 朱媛君,杨劼,万俊华,等.毛乌素沙地丘间低地主要植物叶片性状及其相互关系[J].中国沙漠,2015,35(6):1496-1504.
[10] Ülo Niinemets.Is there a species spectrum within the world-wide leaf economics spectrum?Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex[J].New Phytologists,2015,205:79-96.
[11] 董光荣,吴波,慈龙骏,等.我国荒漠化现状、成因与防治对策[J].中国沙漠,1999,19(4):22-36.
[12] 朱震达,崔书红.中国南方的土地荒漠化问题[J].中国沙漠,1996,16(4):331-337.
[13] 左长青.鄱阳湖沙山成因及治理利用浅析[J].中国水土保持,1986,4(2):2-5.
[14] 杨洁,左长清.蔓荆在鄱阳湖风沙区的适应性及防风作用研究[J].中国水土保持,2014,11(1):47-50.
[15] 魏宗贤,周赛霞,彭焱松,等.鄱阳湖沙地沙漠化过程中单叶蔓荆群落结构和功能特征[J].广西植物,2011,31(5):620-626.
[16] 周瑞莲,王进,杨淑琴,等.海滨沙滩单叶蔓荆对沙埋的生理响应特征[J].生态学报,2013,33(6):1973-1981.
[17] 左长清,杨洁,李相玺.江西省鄱阳湖湖滨沙地蔓荆的固沙效益[J].中国水土保持科学,2003,1(2):38-41.
[18] 李玉霖,崔建垣,苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J].生态学报,2005,25(2):304-311.
[19] 李善家,苏培玺,张海娜,等.荒漠植物叶片水分和功能性状特征及其相互关系[J].植物生理学报,2013,49(2):153-160.
[20] 李玉霖,毛伟,赵学勇,等.北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J].环境科学,2010,31(8):1716-1725.
[21] Killingbeck K T,Whitford W G.High foliar nitrogen in desert shrubs:an important ecosystem trait or defective desert doctrine[J].Ecology,1996,77(6):1728-1737.
[22] 胡启武,尧波,郑林,等.鄱阳湖沙山土壤养分特征与植被恢复方向探讨[J].土壤通报,2012,43(3):651-655.
[23] Chapin Ⅲ F S,Bloom A B,Field C B,et al.Plant responses to multiple environmental factors[J].Bioscience,1987,37(1):49-57.
[24] Wright I J,Reich P B,Westoby M.Strategy shifts in leaf physiology,structure and nutrient content between species of high- and low- rainfall and high- and low- nutrient habitats[J].Functional Ecology,2001,15:423-434.
[25] Elser J J,Fagan W F,Denno R F,et al.Nutritional constraints in terrestrial and freshwater food webs[J].Nature,2000,408(6812):578-580.
[26] McGroddy M E,Daufresne T,Hedin L O.Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios[J].Ecology,2004,85(9):2390-2401.
[27] He J S,Wang L,Flynn D F B,et al.Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes[J].Oecologia,2008,155(2):301-310.
[28] Yu Q,Chen Q S,Elser J J,et al.Linking stoichiometric homoeostasis with ecosystem structure,functioning and stability[J].Ecology Letters,2010,13(11):1390-1399.
[29] Koerselman W,Meuleman A F M.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology,1996,33(6):1441-1450.
[30] Güsewell S.N:P ratios in terrestrial plants: variation and functional significance[J].New Phytologists,2004,164(2):243-266.
[31] 胡启武,聂兰琴,郑艳明,等.沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响[J].生态学报,2014,34(9):2246-2255.
Outlines

/