img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

A Review on Application of Super-Long Tree Ring Chronologies in Global Change Fields: Taking 14C calibration, archaeological dating and catastrophic events as examples

  • Yang Tao
Expand
  • 1. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-03-21

  Revised date: 2016-03-31

  Online published: 2017-03-20

Abstract

Dendrochronology has been developed rapidly during the past decades. There are a large number of super-long (>1 000 years) tree-ring chronologies produced in different parts of the world. The main aim of this article is to introduce and review some important applications of long tree-ring chronologies in the following aspects. Firstly, in order to date the archeology sites precisely, the 14C age should be converted to the calendar age with the help of the correct' 14C calibration curve derived by the long tree-ring chronology. Secondly, long tree-ring chronologies are widely used in dating the ancient architectures and coffins. Finally, the paper introduced the application of long tree-ring chronologies in dating geological catastrophic events, such as dates of large earthquakes and volcanic eruptions. However, there are still many unavoidable problems needed to be solved in the applications of long-term tree ring chronologies. For instance, the longest tree-ring chronology spans only 12 410 years in the whole 14C calibration curve and is necessary to extend the calibration curve. Moreover, there are no sufficient wooden samples when determining the exact age of historical artifacts. Therefore, we should extend super-long tree ring chronologies and develop stable carbon and oxygen isotope series if we want to make more contributions to the work of tree ring application in such scientific fields.

Cite this article

Yang Tao . A Review on Application of Super-Long Tree Ring Chronologies in Global Change Fields: Taking 14C calibration, archaeological dating and catastrophic events as examples[J]. Journal of Desert Research, 2017 , 37(2) : 247 -253 . DOI: 10.7522/j.issn.1000-694X.2016.00040

References

[1] Douglass A E.The secret of the southwest solved by talkative tree rings[C].National Geographic Magazine,2006,56(6):87-96.
[2] 邵雪梅.树轮年代学的若干进展[J].第四纪研究,1997,17(3):265-271.
[3] Friedrich M,Remmele S,Kromer B,et al.The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe-a unique annual record for radiocarbon calibration and paleoenvironment reconstructions[J].Radiocarbon,2004,46(3):1111-1122.
[4] Fowler A,Boswijk G,Lorrey A.A 4500 year Southern Hemisphere record of ENSO activity from kauri tree rings[J].Egu General Assembly,2013,15.
[5] Chen F,Yuan Y J,Wei W S,et al.Tree-ring response of subtropical tree species in southeast China on regional climate and sea-surface temperature variations[J].Trees,2015,29(1):17-24.
[6] Shi J F,Cook E R,Lu H Y,et al.Tree-ring based winter temperature reconstruction for the lower reaches of the Yangtze River in southeast China[J].Climate Research,2010,41:169-175.
[7] Zheng Y H,Zhang Y,Shao X M,et al.Temperature variability inferred from tree-ring widths in the Dabie Mountains of subtropical central China[J].Trees,2012,26(6):1887-1894.
[8] Chen F,Yuan Y J,Wei W S,et al.Reconstructed temperature for Yong'an,Fujian,southeast China:linkages to the Pacific Ocean climate variability[J].Global and Planetary Change,2012,86/87:11-19.
[9] Yang B,Qin C,Wang J L,et al.A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(8):2903-2908.
[10] Houghton J T,Meira Filho L G,Callander B A,et al.Climate Change 1995:The Science of Climate Change[M].Cambridge,UK:Cambridge University Press,1996:1-572.
[11] Houghton J T,Ding Y,Griggs D J,et al.Climate Change 2001:The Scientific Basis[M].Cambridge,UK:Cambridge University Press,2001:1-881.
[12] Jansen E,Overpeck J.Palaeoclimate[M]//Solomon S.Climate Change 2007:The Physical Science Basis.Cambridge,UK:Cambridge University Press,2007:433-497.
[13] Masson-Delmotte V,Schulz M.Information from paleoclimate archives[M]//Stocker T F.Climate Change 2013:The Physical Science Basis.Cambridge,UK:Cambridge University Press,2013:383-464.
[14] Libby W F,Anderson E C,Arnold J R.Age determination by radiocarbon content:world-wide assay of natural radiocarbon[J].Science,1949,109(2827):227-228.
[15] Fallon S.Radiocarbon (14):dating and corals[M]//Hopley D.Encyclopedia of Modern Coral Reefs:Structure,Form and Process.Berlin,Germany:Springer,2011:829-834.
[16] Reimer P J,Baillie M G L,Bard E,et al.IntCal09 and Marine09 radiocarbon age calibration curves,0-50,000 years cal BP[J].Radiocarbon,2009,51(4):1111-1150.
[17] 孙立娜.14C测年和观音阁修建史的初步研究—14C测年在中国古代木结构建筑中的应用[D].天津:天津大学,2012.
[18] Reimer P J,Bard E,Bayliss A,et al.IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J].Radiocarbon,2013,55(4):1869-1887.
[19] Schaub M,Büntgen U,Kaiser K F,et al.Lateglacial environmental variability from Swiss tree rings[J].Quaternary Science Reviews,2008,27(1/2):29-41.
[20] Bond G,Broecker W,Johnsen S,et al.Correlations between climate records from North Atlantic sediments and Greenland ice[J].Nature,1993,365(6442):143-147.
[21] Wolff E W,Chappellaz J,Blunier T,et al.Millennial-scale variability during the last glacial:the ice core record[J].Quaternary Science Reviews,2010,29(21/22):2828-2838.
[22] Palmer J G,Turney C S M,Hogg A G,et al.Progress in refining the global radiocarbon calibration curve using New Zealand kauri (Agathis australis) tree-ring series from Oxygen Isotope Stage 3[J].Quatemary Geochronology,2015,27:158-163.
[23] Ramsey C B,Staff R A,Bryant C L,et al.A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P.[J].Science,2012,338(6105):370-374.
[24] Hughen K,Southon J,Lehman S,et al.Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin[J].Quaternary Science Reviews,2006,25(23/24):3216-3227.
[25] 陈雳,蓝志玟.木构树轮定年法及中国古建筑应用展望[J].建筑学报,2010(S1):98-101.
[26] Kuniholm P I,Kromer B,Manning S W,et al.Anatolian tree rings and the absolute chronology of the eastern Mediterranean,2220-718 BC[J].Nature,1996,381(6585):780-783.
[27] Grissino-Mayer H D,Maxwell J T,Harley G L,et al.Dendrochronology reveals the construction history of an early 19th century farm settlement,southwestern Virginia,USA[J].Journal of Archaeological Science,2013,40(1):481-489.
[28] Grissino-Mayer H D,van de Gevel S L.Tell-Tale trees:historical dendroarchaeology of log structures at Rocky Mount,Piney Flats,Tennessee[J].Historical Archaeology,2007,41(4):32-49.
[29] Schneider E A,Stachowiak L A,Grissino-Mayer H D.The historical dendroarchaeology of two log structures at the Wynnewood State Historic Site,Castalian Springs,Tennessee,USA[J].Dendrochronologia,2014,33:34-41.
[30] Manning S W,Dee M W,Wild E M,et al.High-precision dendro-14C dating of two cedar wood sequences from First Intermediate Period and Middle Kingdom Egypt and a small regional climate-related 14C divergence[J].Journal of Archaeological Science,2014,46:401-416.
[31] Tegel W,Elburg R,Hakelberg D,et al.Early neolithic water wells reveal the world's oldest wood architecture[J].Plos One,2012,7(12):e51374.
[32] 王树芝.青海都兰地区公元前515年以来树木年轮表的建立及应用[J].考古与文物,2004(6):45-50.
[33] 王树芝,邵雪梅,许新国,等.跨度为2332年的考古树轮年表的建立与夏塔图墓葬定年[J].考古,2008(2):80-86.
[34] Li M Q,Shao X M,Yin Z Y,et al.Tree-ring dating of the Reshui-1 tomb in Dulan County,Qinghai Province,north-west China[J].Plos One,2015,10(8):e0133438.
[35] Fraiture P.Contribution of dendrochronology to understanding of wood procurement sources for panel paintings in the former southern Netherlands from 1450 AD to 1650 AD[J].Dendrochronologia,2009,27(2):95-111.
[36] Pichler T,Nicolussi K,Goldenberg G.Dendrochronological analysis and dating of wooden artefacts from the prehistoric copper mine Kelchalm/Kitzb hel (Austria)[J].Dendrochronologia,2009,27(2):87-94.
[37] Grissino-Mayer H D,Sheppard P R,Cleaveland M K,et al.Adverse implications of misdating in dendrochronology:addressing the re-dating of the “Messiah” violin[J].Dendrochronologia,2010,28(3):149-159.
[38] Klein A,Nemestothy S,Kadnar J,et al.Dating furniture and coopered vessels without waney edge-reconstructing historical wood-working in Austria with the help of dendrochronology[J].Dendrochronologia,2014,32(1):90-96.
[39] Wang S Z,Zhao X H.Re-evaluating the Silk Road's Qinghai route using dendrochronology[J].Dendrochronologia,2013,31(1):34-40.
[40] Lorentzen B,Manning S W,Cvikel D,et al.High-precision dating the Akko 1 shipwreck,Israel:wiggle-matching the life and death of a ship into the historical record[J].Journal of Archaeological Science,2014,41:772-783.
[41] Myhr K,Thun T,Hytteborn H.Dendrochronological dating of wooden artefacts using photography[J].Norwegian Archaeological Review,2007,40(2):179-186.
[42] Thun T,Alsvik E.Dendrochronological dating of four chests:a surprising result[J].Dendrochronologia,2009,27(1):71-74.
[43] Helama S,Läänelaid A,Santala M,et al.Dendrochronological dating of wooden artifacts by measuring the tree rings using magnifying glass and photography-assisted method:an example of a Dutch panel painting[J].Archaeological and Anthropological Sciences,2014,8(1):1-7.
[44] Mccarroll D,Pettigrew E,Luckman A,et al.Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings[J].Arctic Antarctic and Alpine Research,2002,34(4):450-453.
[45] Wilson R,Loader N J,Rydval M,et al.Reconstructing Holocene climate from tree rings:the potential for a long chronology from the Scottish Highlands[J].Holocene,2011,22(1):3-11.
[46] Helama S,Arentoft B W,Collin-Haubensak O,et al.Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia,Finland[J].Ecological Research,2013,28(6):1019-1028.
[47] Fantucci R,Sorriso-Valvo M.Dendrogeomorphological analysis of a slope near Lago,Calabria (Italy)[J].Geomorphology,1999,30(1/2):165-174.
[48] Stefanini M C.Spatio-temporal analysis of a complex landslide in the northern Apennines (Italy) by means of dendrochronology[J].Geomorphology,2004,63(3/4):191-202.
[49] Grattan J,Brayshay M.An amazing and portentous summer:environmental and social responses in Britain to the 1783 eruption of an Iceland volcano[J].Geographical Journal,1995,161(2):125-134.
[50] Esper J,Cook E R,Schweingruber F H.Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability[J].Science,2002,295(5563):2250-2253.
[51] 韩同林.西藏当雄一带地震形变带发生年代确定的新方法--树木年轮计算法[J].中国地质科学院院报,1983(2):95-106.
[52] Agatova A R,Nepop R K,Barinov V V,et al.The first dating of strong Holocene earthquakes in Gorny Altai using long-term tree-ring chronologies[J].Russian Geology and Geophysics,2014,55(9):1065-1073.
[53] Hofmann D J.Perturbations to the global atmosphere associated with the El Chichon volcanic eruption of 1982[J].Reviews of Geophysics,1987,25(4):743-759.
[54] McCormick M P,Thomason L W,Trepte C R.Atmospheric effects of the Mt Pinatubo eruption[J].Nature,1995,373(6513):399-404.
[55] Robock A.Volcanic eruptions and climate[J].Reviews of Geophysics,2000,38(2):191-219.
[56] Salzer M W,Hughes M K.Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr[J].Quaternary Research,2007,67(1):57-68.
[57] Sheppard P R,Ort M H,Anderson K C,et al.Multiple dendrochronological responses to the eruption of Cinder Cone,Lassen volcanic National Park,California[J].Dendrochronologia,2009,27(3):213-221.
[58] Breitenmoser P,Beer J,Brönnimann S,et al.Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2012,313/314:127-139.
[59] McCarroll D,Loader N J,Jalkanen R,et al.A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe[J].Holocene,2013,23(4):471-484.
[60] Hantemirov R M,Shiyatov S G.A continuous multimillennial ring-width chronology in Yamal,northwestern Siberia[J].Holocene,2002,12(6):717-726.
[61] Helama S,Lindholm M,Timonen M,et al.The supra-long Scots pine tree-ring record for Finnish Lapland:part 2,interannual to centennial variability in summer temperatures for 7500 years[J].Holocene,2002,12(6):681-687.
[62] Zielinski G A,Mayewski P A,Meeker L D,et al.Record of volcanism since 7000 B.C.from the GISP2 Greenland ice core and implications for the volcano-climate system[J].Science,1994,264(5161):948-952.
[63] Sigl M,Winstrup M,McConnell J R,et al.Timing and climate forcing of volcanic eruptions for the past 2,500 years[J].Nature,2015,523(7562):543-549.
[64] Stoffel M,Khodri M,Corona C,et al.Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years[J].Nature Geoscience,2015,8(10):784-788.
[65] Büntgen U,Myglan V S,Ljungqvist F C,et al.Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD[J].Nature Geoscience,2016,9(3):231-236.
[66] Harbeck M,Seifert L,Hänsch S,et al.Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into Justinianic Plague[J].Plos Pathogens,2013,9(5):e1003349.
[67] McCormick M,Büntgen U,Cane M A,et al.Climate change during and after the Roman Empire:reconstructing the past from scientific and historical evidence[J].Journal of Interdisciplinary History,2012,43(2):169-220.
[68] Büntgen U,Tegel W,Nicolussi K,et al.2500 years of European climate variability and human susceptibility[J].Science,2011,331(6017):578-582.
[69] Hartl-Meier C,Zang C,Büntgen U,et al.Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest[J].Tree Physiology,2014,35(1):4-15.
Outlines

/